Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38126364

RESUMO

Why does protein kinase A respond to purine nucleosides in certain pathogens, but not to the cyclic nucleotides that activate this kinase in most other organisms?


Assuntos
Leishmania donovani , Trypanosoma brucei brucei , Ligantes , Fosfotransferases/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleosídeos de Purina/metabolismo
2.
J Chem Phys ; 158(12): 121101, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37003757

RESUMO

Protein kinase G (PKG) is an essential regulator of eukaryotic cyclic guanosine monophosphate (cGMP)-dependent intracellular signaling, controlling pathways that are often distinct from those regulated by cyclic adenosine monophosphate (cAMP). Specifically, the C-terminal cyclic-nucleotide-binding domain (CNB-B) of PKG has emerged as a critical module to control allostery and cGMP-selectivity in PKG. While key contributions to the cGMP-versus-cAMP selectivity of CNB-B were previously assessed, only limited knowledge is currently available on how cyclic nucleotide binding rewires the network of hydrogen bonds in CNB-B, and how such rewiring contributes to allostery and cGMP selectivity. To address this gap, we extend the comparative analysis of apo, cAMP- and cGMP-bound CNB-B to H/D fractionation factors (FFs), which are well-suited for assessing backbone hydrogen-bond strengths within proteins. Apo-vs-bound comparisons inform of perturbations arising from both binding and allostery, while cGMP-bound vs cAMP-bound comparisons inform of perturbations that are purely allosteric. The comparative FF analyses of the bound states revealed mixed patterns of hydrogen-bond strengthening and weakening, pointing to inherent frustration, whereby not all hydrogen bonds can be simultaneously stabilized. Interestingly, contrary to expectations, these patterns include a weakening of hydrogen bonds not only within critical recognition and allosteric elements of CNB-B, but also within elements known to undergo rigid-body movement upon cyclic nucleotide binding. These results suggest that frustration may contribute to the reversibility of allosteric conformational shifts by avoiding over-rigidification that may otherwise trap CNB-B in its active state. Considering that PKG CNB-B serves as a prototype for allosteric conformational switches, similar concepts may be applicable to allosteric domains in general.


Assuntos
AMP Cíclico , Nucleotídeos Cíclicos , Nucleotídeos Cíclicos/metabolismo , AMP Cíclico/química , AMP Cíclico/metabolismo , GMP Cíclico/química , GMP Cíclico/metabolismo , Ligação Proteica , Hidrogênio
3.
Biochem J ; 479(7): 825-838, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35403669

RESUMO

Allosteric pluripotency arises when the functional response of an allosteric receptor to an allosteric stimulus depends on additional allosteric modulators. Here, we discuss allosteric pluripotency as observed in the prototypical Protein Kinase A (PKA) as well as in other signaling systems, from typical multidomain signaling proteins to bacterial enzymes. We identify key drivers of pluripotent allostery and illustrate how hypothesizing allosteric pluripotency may solve apparent discrepancies currently present in the literature regarding the dual nature of known allosteric modulators. We also outline the implications of allosteric pluripotency for cellular signaling and allosteric drug design, and analyze the challenges and opportunities opened by the pluripotent nature of allostery.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Desenho de Fármacos , Regulação Alostérica/fisiologia , Sítio Alostérico , Transdução de Sinais
4.
J Mol Biol ; 434(17): 167584, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427632

RESUMO

The cAMP- and cGMP-dependent protein kinases (PKA and PKG) are canonically activated by the corresponding cyclic nucleotides. However, both systems are also sensitive to a wide range of non-canonical allosteric effectors, such as reactive oxygen species, which induce the formation of regulatory inter- and intra-molecular disulfide bridges, and disease-related mutations (DRMs). Here, we present a combined analysis of representative non-canonical allosteric effectors for PKA and PKG, and we identify common molecular mechanisms underlying non-canonical allostery in these kinases, from shifts in dynamical regulatory equilibria to modulation of inter-protomer interactions. In addition, mutations may also drive oligomerization beyond dimerization, and possibly phase transitions, causing loss of kinase inhibitory function and amplifying the allosteric effects of DRMs. Hence non-canonical allosteric stimuli often result in constitutive kinase activation underlying either physiological control of downstream signaling pathways or pathological outcomes, from aortic aneurisms to cancer predisposition. Overall, PKA and PKG emerge as "pan-sensors" going well beyond canonical cyclic nucleotide activation, revealing their versatile roles as central signaling hubs.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Proteínas Quinases Dependentes de GMP Cíclico , Regulação Alostérica , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/química , Proteínas Quinases Dependentes de GMP Cíclico/genética , Humanos , Mutação , Transdução de Sinais
5.
J Mol Biol ; 433(21): 167202, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34400180

RESUMO

Protein kinase G (PKG) is a major receptor of cGMP, and controls signaling pathways distinct from those regulated by cAMP. However, the contributions of the two substituents that differentiate cGMP from cAMP (i.e. 6-oxo and 2-NH2) to the cGMP-versus-cAMP selectivity of PKG remain unclear. Here, using NMR to map how binding affinity and dynamics of the protein and ligand vary along a ligand double-substitution cycle, we show that the contributions of the two substituents to binding affinity are surprisingly non-additive. Such non-additivity stems primarily from mutual protein-ligand conformational selection, whereby not only does the ligand select for a preferred protein conformation upon binding, but also, the protein selects for a preferred ligand conformation. The 6-oxo substituent mainly controls the conformational equilibrium of the bound protein, while the 2-NH2 substituent primarily controls the conformational equilibrium of the unbound ligand (i.e. syn versus anti). Therefore, understanding the conformational dynamics of both the protein and ligand is essential to explain the cGMP-versus-cAMP selectivity of PKG.


Assuntos
AMP Cíclico/química , Proteínas Quinases Dependentes de GMP Cíclico/química , GMP Cíclico/química , Sítios de Ligação , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Expressão Gênica , Humanos , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Termodinâmica
6.
FEBS J ; 285(12): 2182-2192, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29444387

RESUMO

The hyperpolarization-activated cyclic-nucleotide-gated (HCN) ion channels control nerve impulse transmission and cardiac pacemaker activity. The modulation by cAMP is critical for the regulatory function of HCN in both neurons and cardiomyocytes, but the underlying mechanism is not fully understood. Here, we show how the structure of the apo cAMP-binding domain of the HCN4 isoform has contributed to a model for the cAMP-dependent modulation of the HCN ion-channel. This model recapitulates the structural and dynamical changes that occur along the thermodynamic cycle arising from the coupling of cAMP-binding and HCN self-association equilibria. The proposed model addresses some of the questions previously open about the auto-inhibition of HCN and its cAMP-induced activation, while opening new opportunities for selectively targeting HCN through allosteric ligands. A remaining challenge is the investigation of HCN dimers and their regulatory role. Overcoming this challenge will require the integration of crystallography, cryo electron microscopy, NMR, electrophysiology and simulations.


Assuntos
AMP Cíclico/química , GMP Cíclico/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Proteínas Musculares/química , Canais de Potássio/química , Potássio/química , Regulação Alostérica , Motivos de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Expressão Gênica , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico , Modelos Moleculares , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Potássio/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
7.
J Phys Chem B ; 122(8): 2177-2190, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29461059

RESUMO

Hyperpolarization-activated cyclic-nucleotide-modulated (HCN) ion channels control rhythmicity in neurons and cardiomyocytes. Cyclic AMP (cAMP) modulates HCN activity through the cAMP-induced formation of a tetrameric gating ring spanning the intracellular region (IR) of HCN. Although evidence from confocal patch-clamp fluorometry indicates that the cAMP-dependent gating of HCN occurs through a dimer of dimers, the structural and dynamical basis of cAMP allostery in HCN dimers has so far remained elusive. Thus, here we examine how dimers influence IR structural dynamics, and the role that such structural dynamics play in HCN allostery. To this end, we performed molecular dynamics (MD) simulations of HCN4 IR dimers in their fully apo, fully holo, and partially cAMP-bound states, resulting in a total simulated time of 1.2 µs. Comparative analyses of these MD trajectories, as well as previous monomer and tetramer simulations utilized as benchmarks for comparison, reveal that dimers markedly sensitize the HCN IR to cAMP-modulated allostery. Our results indicate that dimerization fine-tunes the IR dynamics to enhance, relative to both monomers and tetramers, the allosteric intra- and interprotomer coupling between the cAMP-binding domain and tetramerization domain components of the IR. The resulting allosteric model provides a viable rationalization of electrophysiological data on the role of IR dimers in HCN activation.


Assuntos
AMP Cíclico/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Simulação de Dinâmica Molecular , AMP Cíclico/química , Dimerização , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química
8.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt B): 1529-1543, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28911813

RESUMO

It is now established that understanding the molecular basis of biological function requires atomic resolution maps of both structure and dynamics. Here, we review several illustrative examples of functional dynamics selected from our work on cyclic nucleotide signaling and amyloid inhibition. Although fundamentally diverse, a central aspect common to both fields is that function can only be rationalized by considering dynamic equilibria between distinct states of the accessible free energy landscape. The dynamic exchange between ground and excited states of signaling proteins is essential to explain auto-inhibition and allosteric activation. The dynamic exchange between non-toxic monomeric species and toxic oligomers of amyloidogenic proteins provides a foundation to understand amyloid inhibition. NMR ideally probes both types of dynamic exchange at atomic resolution. Specifically, we will show how NMR was utilized to reveal the dynamical basis of cyclic nucleotide affinity, selectivity, agonism and antagonism in multiple eukaryotic cAMP and cGMP receptors. We will also illustrate how NMR revealed the mechanism of action of plasma proteins that act as extracellular chaperones and inhibit the self-association of the prototypical amyloidogenic Aß peptide. The examples outlined in this review illustrate the widespread implications of functional dynamics and the power of NMR as an indispensable tool in molecular pharmacology and pathology.


Assuntos
Amiloide/química , Proteínas de Transporte/química , AMP Cíclico/química , GMP Cíclico/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Ressonância Magnética Nuclear Biomolecular , Receptores de AMP Cíclico/química , Amiloide/metabolismo , Animais , Proteínas de Transporte/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores de AMP Cíclico/metabolismo
9.
J Biol Chem ; 290(48): 28631-41, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26370085

RESUMO

Protein kinase G (PKG) is a major receptor of cGMP and controls signaling pathways often distinct from those regulated by cAMP. Hence, the selective activation of PKG by cGMP versus cAMP is critical. However, the mechanism of cGMP-versus-cAMP selectivity is only limitedly understood. Although the C-terminal cyclic nucleotide-binding domain B of PKG binds cGMP with higher affinity than cAMP, the intracellular concentrations of cAMP are typically higher than those of cGMP, suggesting that the cGMP-versus-cAMP selectivity of PKG is not controlled uniquely through affinities. Here, we show that cAMP is a partial agonist for PKG, and we elucidate the mechanism for cAMP partial agonism through the comparative NMR analysis of the apo, cGMP-, and cAMP-bound forms of the PKG cyclic nucleotide-binding domain B. We show that although cGMP activation is adequately explained by a two-state conformational selection model, the partial agonism of cAMP arises from the sampling of a third, partially autoinhibited state.


Assuntos
AMP Cíclico/química , Proteína Quinase Dependente de GMP Cíclico Tipo I/química , GMP Cíclico/química , Modelos Moleculares , Humanos , Estrutura Terciária de Proteína , Especificidade por Substrato
10.
J Biol Chem ; 290(29): 17642-17654, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25944904

RESUMO

The hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels control rhythmicity in neurons and cardiomyocytes. Cyclic AMP allosterically modulates HCN through the cAMP-dependent formation of a tetrameric gating ring spanning the intracellular region (IR) of HCN, to which cAMP binds. Although the apo versus holo conformational changes of the cAMP-binding domain (CBD) have been previously mapped, only limited information is currently available on the HCN IR dynamics, which have been hypothesized to play a critical role in the cAMP-dependent gating of HCN. Here, using molecular dynamics simulations validated and complemented by experimental NMR and CD data, we comparatively analyze HCN IR dynamics in the four states of the thermodynamic cycle arising from the coupling between cAMP binding and tetramerization equilibria. This extensive set of molecular dynamics trajectories captures the active-to-inactive transition that had remained elusive for other CBDs, and it provides unprecedented insight on the role of IR dynamics in HCN autoinhibition and its release by cAMP. Specifically, the IR tetramerization domain becomes more flexible in the monomeric states, removing steric clashes that the apo-CDB structure would otherwise impose. Furthermore, the simulations reveal that the active/inactive structural transition for the apo-monomeric CBD occurs through a manifold of pathways that are more divergent than previously anticipated. Upon cAMP binding, these pathways become disallowed, pre-confining the CBD conformational ensemble to a tetramer-compatible state. This conformational confinement primes the IR for tetramerization and thus provides a model of how cAMP controls HCN channel gating.


Assuntos
AMP Cíclico/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Canais de Potássio/química , Canais de Potássio/metabolismo , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Multimerização Proteica , Termodinâmica
11.
J Biol Chem ; 289(32): 22205-20, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24878962

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels control neuronal and cardiac electrical rhythmicity. There are four homologous isoforms (HCN1-4) sharing a common multidomain architecture that includes an N-terminal transmembrane tetrameric ion channel followed by a cytoplasmic "C-linker," which connects a more distal cAMP-binding domain (CBD) to the inner pore. Channel opening is primarily stimulated by transmembrane elements that sense membrane hyperpolarization, although cAMP reduces the voltage required for HCN activation by promoting tetramerization of the intracellular C-linker, which in turn relieves auto-inhibition of the inner pore gate. Although binding of cAMP has been proposed to relieve auto-inhibition by affecting the structure of the C-linker and CBD, the nature and extent of these cAMP-dependent changes remain limitedly explored. Here, we used NMR to probe the changes caused by the binding of cAMP and of cCMP, a partial agonist, to the apo-CBD of HCN4. Our data indicate that the CBD exists in a dynamic two-state equilibrium, whose position as gauged by NMR chemical shifts correlates with the V½ voltage measured through electrophysiology. In the absence of cAMP, the most populated CBD state leads to steric clashes with the activated or "tetrameric" C-linker, which becomes energetically unfavored. The steric clashes of the apo tetramer are eliminated either by cAMP binding, which selects for a CBD state devoid of steric clashes with the tetrameric C-linker and facilitates channel opening, or by a transition of apo-HCN to monomers or dimer of dimers, in which the C-linker becomes less structured, and channel opening is not facilitated.


Assuntos
AMP Cíclico/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Proteínas Musculares/metabolismo , Canais de Potássio/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , CMP Cíclico/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Ativação do Canal Iônico , Potenciais da Membrana , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Musculares/química , Proteínas Musculares/genética , Ressonância Magnética Nuclear Biomolecular , Canais de Potássio/química , Canais de Potássio/genética , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
12.
Biochem Soc Trans ; 42(2): 302-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24646235

RESUMO

Eukaryotic CBDs (cAMP-binding domains) control multiple cellular functions (e.g. phosphorylation, guanine exchange and ion channel gating). Hence the manipulation of cAMP-dependent signalling pathways has a high translational potential. However, the ubiquity of eukaryotic CBDs also poses a challenge in terms of selectivity. Before the full translational potential of cAMP signalling can be tapped, it is critical to understand the structural basis for selective cAMP agonism and antagonism. Recent NMR investigations have shown that structurally homologous CBDs respond differently to several CBD ligands and that these unexpected differences arise at the level of either binding (i.e. affinity) or allostery (i.e. modulation of the autoinhibitory equilibria). In the present article, we specifically address how the highly conserved CBD fold binds cAMP with markedly different affinities in PKA (protein kinase A) relative to other eukaryotic cAMP receptors, such as Epac (exchange protein directly activated by cAMP) and HCN (hyperpolarization-activated cyclic-nucleotide-modulated channel). A major emerging determinant of cAMP affinity is hypothesized to be the position of the autoinhibitory equilibrium of the apo-CBD, which appears to vary significantly across different CBDs. These analyses may assist the development of selective CBD effectors that serve as potential drug leads for the treatment of cardiovascular diseases.


Assuntos
AMP Cíclico/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Transdução de Sinais/fisiologia
13.
Biochem Soc Trans ; 42(1): 139-44, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24450641

RESUMO

Weak interactions mediated by dynamic linkers are key determinants of allosteric regulation in multidomain signalling proteins. However, the mechanisms of linker-dependent control have remained largely elusive. In the present article, we review an allosteric model introduced recently to explain how signalling proteins effectively sense and respond to weak interactions, such as those elicited by flexible linkers flanking globular domains. Central to this model is the idea that near degeneracy within the free energy landscape of conformational selection maximally amplifies the response to weak (~2RT), but conformation-selective interactions. The model was tested as proof of principle using the prototypical regulatory subunit (R) of protein kinase A and led to the unanticipated finding that dynamic linkers control kinase activation and inhibition by tuning the inhibitory pre-equilibrium of a minimally populated intermediate (apo R). A practical implication of the proposed model is a new strategy to design kinase inhibitors with enhanced potency through frustration-relieving mutations.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , AMP Cíclico/metabolismo , Regulação Alostérica , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/química , Desenho de Fármacos , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Sistemas do Segundo Mensageiro , Termodinâmica
14.
Structure ; 22(1): 116-24, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24239458

RESUMO

Cyclic guanosine monophosphate (cGMP) and cyclic AMP (cAMP)-dependent protein kinases (PKG and PKA) are closely related homologs, and the cyclic nucleotide specificity of each kinase is crucial for keeping the two signaling pathways segregated, but the molecular mechanism of cyclic nucleotide selectivity is unknown. Here, we report that the PKG Iß C-terminal cyclic nucleotide binding domain (CNB-B) is highly selective for cGMP binding, and we have solved crystal structures of CNB-B with and without bound cGMP. These structures, combined with a comprehensive mutagenic analysis, allowed us to identify Leu296 and Arg297 as key residues that mediate cGMP selectivity. In addition, by comparing the cGMP bound and unbound structures, we observed large conformational changes in the C-terminal helices in response to cGMP binding, which were stabilized by recruitment of Tyr351 as a "capping residue" for cGMP. The observed rearrangements of the C-terminal helices provide a mechanical insight into release of the catalytic domain and kinase activation.


Assuntos
Arginina/química , AMP Cíclico/química , Proteína Quinase Dependente de GMP Cíclico Tipo I/química , GMP Cíclico/química , Leucina/química , Sequência de Aminoácidos , Arginina/genética , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Cinética , Leucina/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Termodinâmica
15.
Biophys J ; 102(3): 630-9, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22325287

RESUMO

EPAC is a cAMP-dependent guanine nucleotide exchange factor that serves as a prototypical molecular switch for the regulation of essential cellular processes. Although EPAC activation by cAMP has been extensively investigated, the mechanism of EPAC autoinhibition is still not fully understood. The steric clash between the side chains of two conserved residues, L273 and F300 in EPAC1, has been previously shown to oppose the inactive-to-active conformational transition in the absence of cAMP. However, it has also been hypothesized that autoinhibition is assisted by entropic losses caused by quenching of dynamics that occurs if the inactive-to-active transition takes place in the absence of cAMP. Here, we test this hypothesis through the comparative NMR analysis of several EPAC1 mutants that target different allosteric sites of the cAMP-binding domain (CBD). Using what to our knowledge is a novel projection analysis of NMR chemical shifts to probe the effect of the mutations on the autoinhibition equilibrium of the CBD, we find that whenever the apo/active state is stabilized relative to the apo/inactive state, dynamics are consistently quenched in a conserved loop (ß2-ß3) and helix (α5) of the CBD. Overall, our results point to the presence of conserved and nondegenerate determinants of CBD autoinhibition that extends beyond the originally proposed L273/F300 residue pair, suggesting that complete activation necessitates the simultaneous suppression of multiple autoinhibitory mechanisms, which in turn confers added specificity for the cAMP allosteric effector.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ressonância Magnética Nuclear Biomolecular , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , AMP Cíclico/metabolismo , Entropia , Fatores de Troca do Nucleotídeo Guanina/genética , Simulação de Dinâmica Molecular , Mutação , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
16.
Biochem Soc Trans ; 40(1): 219-23, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22260694

RESUMO

Epac (exchange protein directly activated by cAMP) is a critical cAMP receptor, which senses cAMP and couples the cAMP signal to the catalysis of guanine exchange in the Rap substrate. In the present paper, we review the NMR studies that we have undertaken on the CBD (cyclic-nucleotide-binding domain) of Epac1. Our NMR investigations have shown that cAMP controls distal autoinhibitory interactions through long-range modulations in dynamics. Such dynamically mediated allosteric effects contribute not only to the cAMP-dependent activation of Epac, but also to the selectivity of Epac for cAMP in contrast with cGMP. In addition, we have mapped the interaction networks that couple the cAMP-binding site to the sites involved in the autoinhibitory interactions, using a method based on the covariance analysis of NMR chemical shifts. We anticipate that this approach is generally applicable to dissect allosteric networks in signalling domains.


Assuntos
AMP Cíclico/química , Fatores de Troca do Nucleotídeo Guanina/química , Regulação Alostérica , Sítio Alostérico , Motivos de Aminoácidos , Animais , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica
17.
J Biol Chem ; 286(49): 42655-42669, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21873431

RESUMO

The exchange protein directly activated by cAMP (EPAC) is a key receptor of cAMP in eukaryotes and controls critical signaling pathways. Currently, no residue resolution information is available on the full-length EPAC dynamics, which are known to be pivotal determinants of allostery. In addition, no information is presently available on the intermediates for the classical induced fit and conformational selection activation pathways. Here these questions are addressed through molecular dynamics simulations on five key states along the thermodynamic cycle for the cAMP-dependent activation of a fully functional construct of EPAC2, which includes the cAMP-binding domain and the integral catalytic region. The simulations are not only validated by the agreement with the experimental trends in cAMP-binding domain dynamics determined by NMR, but they also reveal unanticipated dynamic attributes, rationalizing previously unexplained aspects of EPAC activation and autoinhibition. Specifically, the simulations show that cAMP binding causes an extensive perturbation of dynamics in the distal catalytic region, assisting the recognition of the Rap1b substrate. In addition, analysis of the activation intermediates points to a possible hybrid mechanism of EPAC allostery incorporating elements of both the induced fit and conformational selection models. In this mechanism an entropy compensation strategy results in a low free-energy pathway of activation. Furthermore, the simulations indicate that the autoinhibitory interactions of EPAC are more dynamic than previously anticipated, leading to a revised model of autoinhibition in which dynamics fine tune the stability of the autoinhibited state, optimally sensitizing it to cAMP while avoiding constitutive activation.


Assuntos
AMP Cíclico/química , Fatores de Troca do Nucleotídeo Guanina/química , Sítio Alostérico , Animais , Simulação por Computador , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Solventes
18.
Interdiscip Sci ; 3(1): 1-16, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21369882

RESUMO

Polyglutamine is a naturally occurring peptide found within several proteins in neuronal cells of the brain, and its aggregation has been implicated in several neurodegenerative diseases, including Huntington's disease. The resulting aggregates have been demonstrated to possess ß-sheet structure, and experimental evidence has demonstrated that aggregation begins with a nucleus composed of a single peptide. In this paper, we computationally examined the structural tendencies of mutant polyglutamine peptides that were studied experimentally, and found to aggregate with varying efficiencies. Low-energy structures were generated for each peptide by simulated annealing molecular dynamics, and were analyzed quantitatively by various geometry-based methods. In all simulations, the carboxy-terminal end of each peptide was constrained to a ß-turn-ß-strand structure to simulate a situation in which ß-structure formation has initiated due to interaction with a seed or a growing oligomer/aggregate. Our results suggest the experimentally-observed inhibition of aggregation to be due to localized conformational restraint on the peptide backbone, which in turn confines the peptide to native coil structure, discouraging transition towards the ß-sheet structure required for aggregation.


Assuntos
Peptídeos/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Peptídeos/genética , Estrutura Secundária de Proteína
19.
Proc Natl Acad Sci U S A ; 108(15): 6133-8, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21444788

RESUMO

Allostery is a fundamental mechanism of regulation in biology. The residues at the end points of long-range allosteric perturbations are commonly identified by the comparative analyses of structures and dynamics in apo and effector-bound states. However, the networks of interactions mediating the propagation of allosteric signals between the end points often remain elusive. Here we show that the covariance analysis of NMR chemical shift changes caused by a set of covalently modified analogs of the allosteric effector (i.e., agonists and antagonists) reveals extended networks of coupled residues. Unexpectedly, such networks reach not only sites subject to effector-dependent structural variations, but also regions that are controlled by dynamically driven allostery. In these regions the allosteric signal is propagated mainly by dynamic rather than structural modulations, which result in subtle but highly correlated chemical shift variations. The proposed chemical shift covariance analysis (CHESCA) identifies interresidue correlations based on the combination of agglomerative clustering (AC) and singular value decomposition (SVD). AC results in dendrograms that define functional clusters of coupled residues, while SVD generates score plots that provide a residue-specific dissection of the contributions to binding and allostery. The CHESCA approach was validated by applying it to the cAMP-binding domain of the exchange protein directly activated by cAMP (EPAC) and the CHESCA results are in full agreement with independent mutational data on EPAC activation. Overall, CHESCA is a generally applicable method that utilizes a selected chemical library of effector analogs to quantitatively decode the binding and allosteric information content embedded in chemical shift changes.


Assuntos
Regulação Alostérica , Ressonância Magnética Nuclear Biomolecular , Análise de Variância , AMP Cíclico/química , Fatores de Troca do Nucleotídeo Guanina/química
20.
Comput Biol Chem ; 32(3): 149-58, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18356111

RESUMO

The cyclic AMP receptor protein (CRP) of Escherichia coli binds preferentially to DNA sequences possessing a T:A base pair at position 6 (at which the DNA becomes kinked), but with which it does not form any direct interactions. It has been proposed that indirect readout is involved in CRP-DNA binding, in which specificity for this base pair is primarily related to sequence effects on the energetic susceptibility of the DNA to kink formation. In the current study, the possibility of contributions to indirect readout by water-mediated hydrogen bonding of CRP with the T:A base pair was investigated. A 1.0 ns molecular dynamics simulation of the CRP-cAMP-DNA complex in explicit solvent was performed, and assessed for water-mediated CRP-DNA hydrogen bonds; results were compared to several X-ray crystal structures of comparable complexes. While several water-mediated CRP-DNA hydrogen bonds were identified, none of these involved the T:A base pair at position 6. Therefore, the sequence specificity for this base pair is not likely enhanced by water-mediated hydrogen bonding with the CRP.


Assuntos
AMP Cíclico/química , DNA Bacteriano/química , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Receptores de AMP Cíclico/química , Água/química , Sequência de Bases , Sítios de Ligação , Biologia Computacional/métodos , Simulação por Computador , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Biológicos , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA