Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(40): e202300872, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37005499

RESUMO

Caspase-7 (C7), a cysteine protease involved in apoptosis, is a valuable drug target for its role in human diseases (e. g., Parkinson's, Alzheimer's, sepsis). The C7 allosteric site has great potential for small-molecule targeting, but numerous drug discovery efforts have identified precious few allosteric inhibitors. Here we present the first selective, drug-like inhibitor of C7 along with several other improved inhibitors based on our previous fragment hit. We also provide a rational basis for the impact of allosteric binding on the C7 catalytic cycle by using an integrated approach including X-ray crystallography, stopped-flow kinetics, and molecular dynamics simulations. Our findings suggest allosteric binding disrupts C7 pre-acylation by neutralization of the catalytic dyad, displacement of substrate from the oxyanion hole, and altered dynamics of substrate binding loops. This work advances drug targeting efforts and bolsters our understanding of allosteric structure-activity relationships (ASARs).


Assuntos
Simulação de Dinâmica Molecular , Humanos , Caspase 7/metabolismo , Regulação Alostérica , Conformação Proteica , Sítio Alostérico , Cristalografia por Raios X
2.
Bioconjug Chem ; 30(1): 148-160, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30566343

RESUMO

Site-specific conjugation of small molecules to antibodies represents an attractive goal for the development of more homogeneous targeted therapies and diagnostics. Most site-specific conjugation strategies require modification or removal of antibody glycans or interchain disulfide bonds or engineering of an antibody mutant that bears a reactive handle. While such methods are effective, they complicate the process of preparing antibody conjugates and can negatively impact biological activity. Herein we report the development and detailed characterization of a robust photoaffinity cross-linking method for site-specific conjugation to fully glycosylated wild-type antibodies. The method employs a benzoylphenylalanine (Bpa) mutant of a previously described 13-residue peptide derived from phage display to bind tightly to the Fc domain; upon UV irradiation, the Bpa residue forms a diradical that reacts with the bound antibody. After the initial discovery of an effective Bpa mutant peptide and optimization of the reaction conditions to enable efficient conjugation without concomitant UV-induced photodamage of the antibody, we assessed the scope of the photoconjugation reaction across different human and nonhuman antibodies and antibody mutants. Next, the specific site of conjugation on a human antibody was characterized in detail by mass spectrometry experiments and at atomic resolution by X-ray crystallography. Finally, we adapted the photoconjugation method to attach a cytotoxic payload site-specifically to a wild-type antibody and showed that the resulting conjugate is both stable in plasma and as potent as a conventional antibody-drug conjugate in cells, portending well for future biological applications.


Assuntos
Anticorpos/química , Reagentes de Ligações Cruzadas/química , Imunoconjugados/química , Peptídeos/química , Marcadores de Fotoafinidade/química , Animais , Humanos , Mutação , Oxirredução , Processos Fotoquímicos , Ligação Proteica , Conformação Proteica , Ressonância de Plasmônio de Superfície
3.
ChemMedChem ; 13(23): 2514-2521, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30264520

RESUMO

The application of covalent inhibitors has experienced a renaissance within drug discovery programs in the last decade. To leverage the superior potency and drug target residence time of covalent inhibitors, there have been extensive efforts to develop highly specific covalent modifications to decrease off-target liabilities. Herein, we present a series of covalent inhibitors of an antimicrobial drug target, glutamate racemase, discovered through structure-based virtual screening. A combination of enzyme kinetics, mass spectrometry, and surface-plasmon resonance experiments details a highly specific 1,4-conjugate addition of a small-molecule inhibitor with a catalytic cysteine of glutamate racemase. Molecular dynamics simulations and quantum mechanics-molecular mechanics geometry optimizations reveal the chemistry of the conjugate addition. Two compounds from this series of inhibitors display antimicrobial potency similar to ß-lactam antibiotics, with significant activity against methicillin-resistant S. aureus strains. This study elucidates a detailed chemical rationale for covalent inhibition and provides a platform for the development of antimicrobials with a novel mechanism of action against a target in the cell wall biosynthesis pathway.


Assuntos
Isomerases de Aminoácido/antagonistas & inibidores , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/enzimologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Isomerases de Aminoácido/metabolismo , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/enzimologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
4.
Angew Chem Int Ed Engl ; 56(46): 14443-14447, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-28940929

RESUMO

The caspase family of cysteine proteases are highly sought-after drug targets owing to their essential roles in apoptosis, proliferation, and inflammation pathways. High-throughput screening efforts to discover inhibitors have gained little traction. Fragment-based screening has emerged as a powerful approach for the discovery of innovative drug leads. This method has become a central facet of drug discovery campaigns in the pharmaceutical industry and academia. A fragment-based drug discovery campaign against human caspase-7 resulted in the discovery of a novel series of allosteric inhibitors. An X-ray crystal structure of caspase-7 bound to a fragment hit and a thorough kinetic characterization of a zymogenic form of the enzyme were used to investigate the allosteric mechanism of inhibition. This work further advances our understanding of the mechanisms of allosteric control of this class of pharmaceutically relevant enzymes, and provides a new path forward for drug discovery efforts.


Assuntos
Caspase 7/metabolismo , Descoberta de Drogas/métodos , Regulação Alostérica/efeitos dos fármacos , Apoptose , Caspase 7/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Isótopos/química , Cinética , Solventes/química , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA