Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Haematol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804098

RESUMO

BACKGROUND: Precursor plasma cell disorders such as monoclonal gammopathy of undetermined significance (MGUS) always precede the development of active malignancies such as multiple myeloma (MM). There is a need for novel biomarkers to identify those patients with such precursor plasma cell disorders who rapidly progress to MM. Plasma-derived extracellular vesicles (EVs) may serve as a reservoir of potential biomarkers that can shed light on the pathogenesis and disease biology of MM. METHODS: This study isolated small EVs (SEVs) and large EVs (LEVs) from the platelet-poor peripheral blood plasma of MGUS (n = 9) and MM (n = 12) patients using the size exclusion chromatography-based method and evaluated their proteome using a label-free proteomics workflow. RESULTS: In total, 2055 proteins were identified in SEVs, while 2794 proteins were identified in LEVs. The transferrin receptor (or CD71) protein was upregulated in both populations of EVs derived from MM patients compared to MGUS patients and was of prognostic significance. Similarly, three isoforms of serum amyloid A (SAA) protein, SAA1, SAA2, and SAA4, were also highly upregulated in SEVs within MM patients relative to MGUS patients. Finally, CD40 expression was also higher in the LEVs derived from MM patients than in MGUS patients. CONCLUSIONS: This study demonstrates the feasibility of successfully isolating both SEVs and LEVs from the peripheral blood of patients with plasma cell disorders and quantifying protein biomarkers within these EVs that could be of prognostic and diagnostic interest.

2.
J Proteome Res ; 21(1): 142-150, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34779632

RESUMO

COVID-19 vaccines are becoming more widely available, but accurate and rapid testing remains a crucial tool for slowing the spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus. Although the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) remains the most prevalent testing methodology, numerous tests have been developed that are predicated on detection of the SARS-CoV-2 nucleocapsid protein, including liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunoassay-based approaches. The continuing emergence of SARS-CoV-2 variants has complicated these approaches, as both qRT-PCR and antigen detection methods can be prone to missing viral variants. In this study, we describe several COVID-19 cases where we were unable to detect the expected peptide targets from clinical nasopharyngeal swabs. Whole genome sequencing revealed that single nucleotide polymorphisms in the gene encoding the viral nucleocapsid protein led to sequence variants that were not monitored in the targeted assay. Minor modifications to the LC-MS/MS method ensured detection of the variants of the target peptide. Additional nucleocapsid variants could be detected by performing the bottom-up proteomic analysis of whole viral genome-sequenced samples. This study demonstrates the importance of considering variants of SARS-CoV-2 in the assay design and highlights the flexibility of mass spectrometry-based approaches to detect variants as they evolve.


Assuntos
COVID-19 , SARS-CoV-2 , Vacinas contra COVID-19 , Cromatografia Líquida , Humanos , Nucleocapsídeo/genética , Peptídeos , Proteômica , Espectrometria de Massas em Tandem
3.
Mol Cell Proteomics ; 20: 100134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34400346

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has become a global health pandemic. COVID-19 severity ranges from an asymptomatic infection to a severe multiorgan disease. Although the inflammatory response has been implicated in the pathogenesis of COVID-19, the exact nature of dysregulation in signaling pathways has not yet been elucidated, underscoring the need for further molecular characterization of SARS-CoV-2 infection in humans. Here, we characterize the host response directly at the point of viral entry through analysis of nasopharyngeal swabs. Multiplexed high-resolution MS-based proteomic analysis of confirmed COVID-19 cases and negative controls identified 7582 proteins and revealed significant upregulation of interferon-mediated antiviral signaling in addition to multiple other proteins that are not encoded by interferon-stimulated genes or well characterized during viral infections. Downregulation of several proteasomal subunits, E3 ubiquitin ligases, and components of protein synthesis machinery was significant upon SARS-CoV-2 infection. Targeted proteomics to measure abundance levels of MX1, ISG15, STAT1, RIG-I, and CXCL10 detected proteomic signatures of interferon-mediated antiviral signaling that differentiated COVID-19-positive from COVID-19-negative cases. Phosphoproteomic analysis revealed increased phosphorylation of several proteins with known antiviral properties as well as several proteins involved in ciliary function (CEP131 and CFAP57) that have not previously been implicated in the context of coronavirus infections. In addition, decreased phosphorylation levels of AKT and PKC, which have been shown to play varying roles in different viral infections, were observed in infected individuals relative to controls. These data provide novel insights that add depth to our understanding of SARS-CoV-2 infection in the upper airway and establish a proteomic signature for this viral infection.


Assuntos
COVID-19/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Nasofaringe/virologia , Proteoma/análise , COVID-19/imunologia , COVID-19/virologia , Cromatografia Líquida , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Interferons/imunologia , Interferons/metabolismo , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Quinase C/metabolismo , Proteoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Opioides/metabolismo , Transdução de Sinais , Espectrometria de Massas em Tandem , Ubiquitina/metabolismo
4.
JCI Insight ; 4(18)2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31534057

RESUMO

Insulin resistance associates with increased risk for cognitive decline and dementia; however, the underpinning mechanisms for this increased risk remain to be fully defined. As insulin resistance impairs mitochondrial oxidative metabolism and increases ROS in skeletal muscle, we considered whether similar events occur in the brain, which - like muscle - is rich in insulin receptors and mitochondria. We show that high-fat diet-induced (HFD-induced) brain insulin resistance in mice decreased mitochondrial ATP production rate and oxidative enzyme activities in brain regions rich in insulin receptors. HFD increased ROS emission and reduced antioxidant enzyme activities, with the concurrent accumulation of oxidatively damaged mitochondrial proteins and increased mitochondrial fission. Improvement of insulin sensitivity by both aerobic exercise and metformin ameliorated HFD-induced abnormalities. Moreover, insulin-induced enhancement of ATP production in primary cortical neurons and astrocytes was counteracted by the insulin receptor antagonist S961, demonstrating a direct effect of insulin resistance on brain mitochondria. Further, intranasal S961 administration prevented exercise-induced improvements in ATP production and ROS emission during HFD, supporting that exercise enhances brain mitochondrial function by improving insulin action. These results support that insulin sensitizing by exercise and metformin restores brain mitochondrial function in insulin-resistant states.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Resistência à Insulina/fisiologia , Insulina/metabolismo , Metformina/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Condicionamento Físico Animal/fisiologia , Receptor de Insulina/metabolismo , Administração Intranasal , Administração Oral , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/patologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Glucose/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Peptídeos/administração & dosagem , Cultura Primária de Células , Receptor de Insulina/antagonistas & inibidores , Comportamento Sedentário
5.
Kidney Int ; 95(5): 1269-1272, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31010480

RESUMO

Fibrillary glomerulonephritis (FGN) is a rare glomerular disease. Kidney biopsy is required to establish the diagnosis. Recent studies have identified abundant glomerular deposition of DNAJB9 as a unique histological marker of FGN. We developed an immunoprecipitation-based multiple reaction monitoring method to measure serum levels of DNAJB9. We detected a 4-fold higher abundance of serum DNAJB9 in FGN patients when compared to controls, including patients with other glomerular diseases. Serum DNAJB9 levels were also negatively associated with estimated glomerular filtration rate in patients with FGN. Serum DNAJB9 levels accurately predicted FGN with moderate sensitivity (67%) and with high specificity (98%) and positive and negative predictive value (89% and 95%, respectively). A receiver operating curve analysis demonstrated an AUC of 0.958. These results suggest that serum levels of DNAJB9 could be a valuable marker to predict FGN, with the potential to complement kidney biopsy for the diagnosis of FGN.


Assuntos
Glomerulonefrite/diagnóstico , Proteínas de Choque Térmico HSP40/sangue , Proteínas de Membrana/sangue , Chaperonas Moleculares/sangue , Adulto , Idoso , Biomarcadores/sangue , Estudos Transversais , Diagnóstico Diferencial , Estudos de Viabilidade , Feminino , Taxa de Filtração Glomerular/fisiologia , Glomerulonefrite/sangue , Glomerulonefrite/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Índice de Gravidade de Doença
6.
FASEB J ; 33(3): 4458-4472, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30676773

RESUMO

Despite the strong association between diabetes and dementia, it remains to be fully elucidated how insulin deficiency adversely affects brain functions. We show that insulin deficiency in streptozotocin-induced diabetic mice decreased mitochondrial ATP production and/or citrate synthase and cytochrome oxidase activities in the cerebrum, hypothalamus, and hippocampus. Concomitant decrease in mitochondrial fusion proteins and increased fission proteins in these brain regions likely contributed to altered mitochondrial function. Although insulin deficiency did not cause any detectable increase in reactive oxygen species (ROS) emission, inhibition of monocarboxylate transporters increased ROS emission and further reduced ATP production, indicating the causative roles of elevated ketones and lactate in counteracting oxidative stress and as a fuel source for ATP production during insulin deficiency. Moreover, in healthy mice, intranasal insulin administration increased mitochondrial ATP production, demonstrating a direct regulatory role of insulin on brain mitochondrial function. Proteomics analysis of the cerebrum showed that although insulin deficiency led to oxidative post-translational modification of several proteins that cause tau phosphorylation and neurofibrillary degeneration, insulin administration enhanced neuronal development and neurotransmission pathways. Together these results render support for the critical role of insulin to maintain brain mitochondrial homeostasis and provide mechanistic insight into the potential therapeutic benefits of intranasal insulin.-Ruegsegger, G. N., Manjunatha, S., Summer, P., Gopala, S., Zabeilski, P., Dasari, S., Vanderboom, P. M., Lanza, I. R., Klaus, K. A., Nair, K. S. Insulin deficiency and intranasal insulin alter brain mitochondrial function: a potential factor for dementia in diabetes.


Assuntos
Encéfalo/metabolismo , Demência/etiologia , Diabetes Mellitus Experimental/metabolismo , Insulina/deficiência , Mitocôndrias/fisiologia , Trifosfato de Adenosina/biossíntese , Administração Intranasal , Animais , Encéfalo/efeitos dos fármacos , Ácidos Cumáricos/farmacologia , Demência/metabolismo , Demência/prevenção & controle , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/psicologia , Implantes de Medicamento , Metabolismo Energético/efeitos dos fármacos , Homeostase , Insulina/administração & dosagem , Insulina/farmacologia , Insulina/uso terapêutico , Cetonas/metabolismo , Ácido Láctico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo , Fosforilação , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
7.
Clin Chem ; 62(10): 1334-44, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27540026

RESUMO

BACKGROUND: Electrophoretic separation of serum and urine proteins has played a central role in diagnosing and monitoring plasma cell disorders. Despite limitations in resolution and analytical sensitivity, plus the necessity for adjunct methods, protein gel electrophoresis and immunofixation electrophoresis (IFE) remain front-line tests. METHODS: We developed a MALDI mass spectrometry-based assay that was simple to perform, automatable, analytically sensitive, and applicable to analyzing the wide variety of monoclonal proteins (M-proteins) encountered clinically. This assay, called MASS-FIX, used the unique molecular mass signatures of the different Ig isotypes in combination with nanobody immunoenrichment to generate information-rich mass spectra from which M-proteins could be identified, isotyped, and quantified. The performance of MASS-FIX was compared to current gel-based electrophoresis assays. RESULTS: MASS-FIX detected all M-proteins that were detectable by urine or serum protein electrophoresis. In serial dilution studies, MASS-FIX was more analytically sensitive than IFE. For patient samples, MASS-FIX provided the same primary isotype information for 98% of serum M-proteins (n = 152) and 95% of urine M-proteins (n = 55). MASS-FIX accurately quantified M-protein to <1 g/dL, with reduced bias as compared to protein electrophoresis. Intraassay and interassay CVs were <20% across all samples having M-protein concentrations >0.045 g/dL, with the ability to detect M-proteins <0.01 g/dL. In addition, MASS-FIX could simultaneously measure κ:λ light chain ratios for IgG, IgA, and IgM. Retrospective serial monitoring of patients with myeloma posttreatment demonstrated that MASS-FIX provided equivalent quantitative information to either protein electrophoresis or the Hevylite(™) assay. CONCLUSIONS: MASS-FIX can advance how plasma cell disorders are screened, diagnosed, and monitored.


Assuntos
Anticorpos Monoclonais/sangue , Cadeias Leves de Imunoglobulina/sangue , Nanopartículas/análise , Anticorpos Monoclonais/imunologia , Humanos , Cadeias Leves de Imunoglobulina/imunologia , Nanopartículas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Cell Metab ; 23(6): 1207-1215, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27304512

RESUMO

Growth and differentiation factor 11 (GDF11) is a transforming growth factor ß superfamily member with a controversial role in aging processes. We have developed a highly specific LC-MS/MS assay to quantify GDF11, resolved from its homolog, myostatin (MSTN), based on unique amino acid sequence features. Here, we demonstrate that MSTN, but not GDF11, declines in healthy men throughout aging. Neither GDF11 nor MSTN levels differ as a function of age in healthy women. In an independent cohort of older adults with severe aortic stenosis, we show that individuals with higher GDF11 were more likely to be frail and have diabetes or prior cardiac conditions. Following valve replacement surgery, higher GDF11 at surgical baseline was associated with rehospitalization and multiple adverse events. Cumulatively, our results show that GDF11 levels do not decline throughout aging but are associated with comorbidity, frailty, and greater operative risk in older adults with cardiovascular disease.


Assuntos
Envelhecimento/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Doenças Cardiovasculares/metabolismo , Fatores de Diferenciação de Crescimento/metabolismo , Miostatina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Biomarcadores/sangue , Proteínas Morfogenéticas Ósseas/sangue , Proteínas Morfogenéticas Ósseas/química , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/mortalidade , Cromatografia Líquida , Demografia , Feminino , Fatores de Diferenciação de Crescimento/sangue , Fatores de Diferenciação de Crescimento/química , Humanos , Masculino , Pessoa de Meia-Idade , Miostatina/sangue , Miostatina/química , Fatores de Risco , Espectrometria de Massas em Tandem , Adulto Jovem
9.
Mod Pathol ; 29(6): 607-15, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27015136

RESUMO

Rare hepatic adenomas are associated with synchronous or metachronous fibrolamellar carcinomas. The morphology of these adenomas has not been well described and they have not been subclassifed using the current molecular classification schema. We examined four hepatic adenomas co-occurring with or preceding a diagnosis of fibrolamellar carcinoma in three patients. On histological examination, three of the adenomas showed the typical morphology of HNF1-α inactivated adenomas, whereas one showed a myxoid adenoma morphology. All of the adenomas were negative for PRKACA rearrangements by Fluorescence in situ Hybridization (FISH) analysis. All four of the adenomas showed complete loss or significant reduction of liver fatty acid binding protein (LFABP) expression by immunohistochemistry. Interestingly, the fibrolamellar carcinomas in each case also showed loss of LFABP by immunohistochemistry. One of the fibrolamellar carcinomas was negative for PRKACA rearrangements by FISH, whereas the others were positive. To investigate if LFBAP loss is typical of fibrolamellar carcinomas in general, an additional cohort of tumors was studied (n=19). All 19 fibrolamellar carcinomas showed the expected PRKACA rearrangements and immunostains showed loss of LFABP in each case, consistent with HNF1-α inactivation. To validate this observation, mass spectrometry-based proteomics was performed on tumor-normal pairs of six fibrolamellar carcinomas and showed an average 10-fold reduction in LFABP protein levels, compared with matched normal liver tissue. In conclusion, hepatic adenomas co-occurring with fibrolamellar carcinomas show LFABP loss and are negative for PRKACA rearrangements, indicating they are genetically distinct lesions. These data also demonstrate that LFABP loss, which characterizes HNF1-α inactivation, is a consistent feature of fibrolamellar carcinoma, indicating HNF1-α inactivation is an important event in fibrolamellar carcinoma pathogenesis.


Assuntos
Adenoma/química , Biomarcadores Tumorais/análise , Carcinoma Hepatocelular/química , Proteínas de Ligação a Ácido Graxo/análise , Neoplasias Hepáticas/química , Neoplasias Primárias Múltiplas/química , Segunda Neoplasia Primária/química , Adenoma/genética , Adenoma/patologia , Adolescente , Adulto , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Regulação para Baixo , Feminino , Fusão Gênica , Rearranjo Gênico , Proteínas de Choque Térmico HSP40/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Primárias Múltiplas/genética , Neoplasias Primárias Múltiplas/patologia , Segunda Neoplasia Primária/genética , Segunda Neoplasia Primária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA