Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell ; 185(26): 4869-4872, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36563661

RESUMO

Despite its importance to understanding human brain (dys)function, it has remained challenging to study human neurons in vivo. Recent approaches, using transplantation of human cortical neurons into the rodent brain, offer new prospects for the study of human neural function and disease in vivo, from molecular to circuit levels.


Assuntos
Encéfalo , Neurônios , Humanos , Neurônios/fisiologia , Encéfalo/fisiologia , Células-Tronco
2.
Neuron ; 104(5): 972-986.e6, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31761708

RESUMO

How neural circuits develop in the human brain has remained almost impossible to study at the neuronal level. Here, we investigate human cortical neuron development, plasticity, and function using a mouse/human chimera model in which xenotransplanted human cortical pyramidal neurons integrate as single cells into the mouse cortex. Combined neuronal tracing, electrophysiology, and in vivo structural and functional imaging of the transplanted cells reveal a coordinated developmental roadmap recapitulating key milestones of human cortical neuron development. The human neurons display a prolonged developmental timeline, indicating the neuron-intrinsic retention of juvenile properties as an important component of human brain neoteny. Following maturation, human neurons in the visual cortex display tuned, decorrelated responses to visual stimuli, like mouse neurons, demonstrating their capacity for physiological synaptic integration in host cortical circuits. These findings provide new insights into human neuronal development and open novel avenues for the study of human neuronal function and disease. VIDEO ABSTRACT.


Assuntos
Neurogênese/fisiologia , Células Piramidais/citologia , Células Piramidais/fisiologia , Células Piramidais/transplante , Animais , Diferenciação Celular/fisiologia , Xenoenxertos , Humanos , Camundongos , Córtex Visual/citologia , Córtex Visual/fisiologia
3.
Neuron ; 103(6): 1096-1108.e4, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31353074

RESUMO

During neurogenesis, progenitors switch from self-renewal to differentiation through the interplay of intrinsic and extrinsic cues, but how these are integrated remains poorly understood. Here, we combine whole-genome transcriptional and epigenetic analyses with in vivo functional studies to demonstrate that Bcl6, a transcriptional repressor previously reported to promote cortical neurogenesis, acts as a driver of the neurogenic transition through direct silencing of a selective repertoire of genes belonging to multiple extrinsic pathways promoting self-renewal, most strikingly the Wnt pathway. At the molecular level, Bcl6 represses its targets through Sirt1 recruitment followed by histone deacetylation. Our data identify a molecular logic by which a single cell-intrinsic factor represses multiple extrinsic pathways that favor self-renewal, thereby ensuring robustness of neuronal fate transition.


Assuntos
Autorrenovação Celular/genética , Repressão Epigenética/genética , Histonas/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Sirtuína 1/metabolismo , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Código das Histonas , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , RNA-Seq , Receptores Notch/metabolismo , Transdução de Sinais/genética , Via de Sinalização Wnt/genética
4.
Cell Rep ; 23(9): 2732-2743, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29847802

RESUMO

The transplantation of pluripotent stem-cell-derived neurons constitutes a promising avenue for the treatment of several brain diseases. However, their potential for the repair of the cerebral cortex remains unclear, given its complexity and neuronal diversity. Here, we show that human visual cortical cells differentiated from embryonic stem cells can be transplanted and can integrate successfully into the lesioned mouse adult visual cortex. The transplanted human neurons expressed the appropriate repertoire of markers of six cortical layers, projected axons to specific visual cortical targets, and were synaptically active within the adult brain. Moreover, transplant maturation and integration were much less efficient following transplantation into the lesioned motor cortex, as previously observed for transplanted mouse cortical neurons. These data constitute an important milestone for the potential use of human PSC-derived cortical cells for the reassembly of cortical circuits and emphasize the importance of cortical areal identity for successful transplantation.


Assuntos
Envelhecimento/patologia , Neurônios/transplante , Células-Tronco Pluripotentes/citologia , Córtex Visual/patologia , Animais , Axônios/metabolismo , Biomarcadores/metabolismo , Córtex Cerebral/citologia , Células-Tronco Embrionárias Humanas/citologia , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Especificidade de Órgãos , Sinapses/metabolismo , Telencéfalo/metabolismo
5.
Nat Neurosci ; 21(1): 63-71, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29230053

RESUMO

Accumulating evidence support a causal link between Zika virus (ZIKV) infection during gestation and congenital microcephaly. However, the mechanism of ZIKV-associated microcephaly remains unclear. We combined analyses of ZIKV-infected human fetuses, cultured human neural stem cells and mouse embryos to understand how ZIKV induces microcephaly. We show that ZIKV triggers endoplasmic reticulum stress and unfolded protein response in the cerebral cortex of infected postmortem human fetuses as well as in cultured human neural stem cells. After intracerebral and intraplacental inoculation of ZIKV in mouse embryos, we show that it triggers endoplasmic reticulum stress in embryonic brains in vivo. This perturbs a physiological unfolded protein response within cortical progenitors that controls neurogenesis. Thus, ZIKV-infected progenitors generate fewer projection neurons that eventually settle in the cerebral cortex, whereupon sustained endoplasmic reticulum stress leads to apoptosis. Furthermore, we demonstrate that administration of pharmacological inhibitors of unfolded protein response counteracts these pathophysiological mechanisms and prevents microcephaly in ZIKV-infected mouse embryos. Such defects are specific to ZIKV, as they are not observed upon intraplacental injection of other related flaviviruses in mice.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Microcefalia/etiologia , Microcefalia/metabolismo , Desdobramento de Proteína , Infecção por Zika virus/complicações , Zika virus/patogenicidade , Fator 3 Ativador da Transcrição/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Embrião de Mamíferos , Feto , Regulação Viral da Expressão Gênica , Humanos , Interferon-alfa/genética , Interferon-alfa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microcefalia/prevenção & controle , Microcefalia/virologia , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma/patologia , Infecção por Zika virus/patologia
6.
Neuron ; 85(5): 982-97, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25741724

RESUMO

Pluripotent stem-cell-derived neurons constitute an attractive source for replacement therapies, but their utility remains unclear for cortical diseases. Here, we show that neurons of visual cortex identity, differentiated in vitro from mouse embryonic stem cells (ESCs), can be transplanted successfully following a lesion of the adult mouse visual cortex. Reestablishment of the damaged pathways included long-range and reciprocal axonal projections and synaptic connections with targets of the damaged cortex. Electrophysiological recordings revealed that some grafted neurons were functional and responsive to visual stimuli. No significant integration was observed following grafting of the same neurons in motor cortex, or transplantation of embryonic motor cortex in visual cortex, indicating that successful transplantation required a match in the areal identity of grafted and lesioned neurons. These findings demonstrate that transplantation of mouse ESC-derived neurons of appropriate cortical areal identity can contribute to the reconstruction of an adult damaged cortical circuit.


Assuntos
Diferenciação Celular/fisiologia , Córtex Cerebral/fisiologia , Células-Tronco Embrionárias/fisiologia , Células-Tronco Embrionárias/transplante , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Células Cultivadas , Córtex Cerebral/ultraestrutura , Células-Tronco Embrionárias/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/ultraestrutura , Neurônios/ultraestrutura , Células-Tronco Pluripotentes/fisiologia , Células-Tronco Pluripotentes/transplante , Células-Tronco Pluripotentes/ultraestrutura
7.
Cancer Cell ; 26(6): 797-812, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25490446

RESUMO

Disrupted differentiation during development can lead to oncogenesis, but the underlying mechanisms remain poorly understood. Here we identify BCL6, a transcriptional repressor and lymphoma oncoprotein, as a pivotal factor required for neurogenesis and tumor suppression of medulloblastoma (MB). BCL6 is necessary for and capable of preventing the development of GNP-derived MB in mice, and can block the growth of human MB cells in vitro. BCL6 neurogenic and oncosuppressor effects rely on direct transcriptional repression of Gli1 and Gli2 effectors of the SHH pathway, through recruitment of BCOR corepressor and SIRT1 deacetylase. Our findings identify the BCL6/BCOR/SIRT1 complex as a potent repressor of the SHH pathway in normal and oncogenic neural development, with direct diagnostic and/or therapeutic relevance for SHH MB.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Meduloblastoma/patologia , Neurogênese , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Animais , Linhagem Celular Tumoral , Cerebelo/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Meduloblastoma/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6 , Transativadores/metabolismo , Proteína GLI1 em Dedos de Zinco
8.
Curr Opin Neurobiol ; 27: 151-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24747604

RESUMO

The cerebral cortex contains dozens of neuronal subtypes grouped in specific layers and areas. Recent studies have revealed how embryonic and induced pluripotent stem cells (PSC) can differentiate into a wide diversity of cortical neurons in vitro, while recapitulating many of the temporal and spatial features that characterize corticogenesis. PSC-derived neurons can integrate into the brain following in vivo transplantation and display patterns of morphology and connectivity specific of cortical neurons. PSC-corticogenesis thus emerges as a robust model that provides new ways to link cortical development, evolution, and disease.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Neurogênese/fisiologia , Animais , Humanos
9.
Trends Neurosci ; 37(6): 334-42, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24745669

RESUMO

The development of the cerebral cortex requires the tightly coordinated generation of dozens of neuronal subtypes that will populate specific layers and areas. Recent studies have revealed how pluripotent stem cells (PSC), whether of mouse or human origin, can differentiate into a wide range of cortical neurons in vitro, which can integrate appropriately into the brain following in vivo transplantation. These models are largely artificial but recapitulate a substantial fraction of the complex temporal and regional patterning events that occur during in vivo corticogenesis. Here, we review these findings with emphasis on the new perspectives that they have brought for understanding of cortical development, evolution, and diseases.


Assuntos
Córtex Cerebral/embriologia , Córtex Cerebral/fisiologia , Células-Tronco Embrionárias/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Evolução Biológica , Córtex Cerebral/fisiopatologia , Humanos , Modelos Neurológicos
10.
Stem Cells Dev ; 23(18): 2129-42, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24325299

RESUMO

Current stem cell technologies have enabled the induction of cortical progenitors and neurons from embryonic stem cells (ESCs) and induced pluripotent stem cells in vitro. To understand the mechanisms underlying the acquisition of apico-basal polarity and the formation of processes associated with the stemness of cortical cells generated in monolayer culture, here, we developed a novel in utero transplantation system based on the moderate dissociation of adherens junctions in neuroepithelial tissue. This method enables (1) the incorporation of remarkably higher numbers of grafted cells and (2) quantitative morphological analyses at single-cell resolution, including time-lapse recording analyses. We then grafted cortical progenitors induced from mouse ESCs into the developing brain. Importantly, we revealed that the mode of process extension depends on the extrinsic apico-basal polarity of the host epithelial tissue, as well as on the intrinsic differentiation state of the grafted cells. Further, we successfully transplanted cortical progenitors induced from human ESCs, showing that our strategy enables investigation of the neurogenesis of human neural progenitors within the developing mouse cortex. Specifically, human cortical cells exhibit multiple features of radial migration. The robust transplantation method established here could be utilized both to uncover the missing gap between neurogenesis from ESCs and the tissue environment and as an in vivo model of normal and pathological human corticogenesis.


Assuntos
Polaridade Celular , Córtex Cerebral/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/transplante , Animais , Polaridade Celular/efeitos dos fármacos , Córtex Cerebral/embriologia , Córtex Cerebral/transplante , Ventrículos Cerebrais/embriologia , Ácido Egtázico/administração & dosagem , Ácido Egtázico/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Humanos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos
11.
Neuron ; 77(3): 440-56, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23395372

RESUMO

The study of human cortical development has major implications for brain evolution and diseases but has remained elusive due to paucity of experimental models. Here we found that human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), cultured without added morphogens, recapitulate corticogenesis leading to the sequential generation of functional pyramidal neurons of all six layer identities. After transplantation into mouse neonatal brain, human ESC-derived cortical neurons integrated robustly and established specific axonal projections and dendritic patterns corresponding to native cortical neurons. The differentiation and connectivity of the transplanted human cortical neurons complexified progressively over several months in vivo, culminating in the establishment of functional synapses with the host circuitry. Our data demonstrate that human cortical neurons generated in vitro from ESC/iPSC can develop complex hodological properties characteristic of the cerebral cortex in vivo, thereby offering unprecedented opportunities for the modeling of human cortex diseases and brain repair.


Assuntos
Encéfalo/citologia , Células-Tronco Embrionárias/citologia , Rede Nervosa/fisiologia , Células-Tronco Pluripotentes/fisiologia , Células Piramidais/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Fatores Etários , Animais , Axônios/fisiologia , Bromodesoxiuridina , Cálcio/metabolismo , Diferenciação Celular , Transplante de Células , Células Cultivadas , Dendritos/fisiologia , Potenciais Evocados/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Feto , Corantes Fluorescentes/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/genética , Humanos , Técnicas In Vitro , Camundongos , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/metabolismo , Rede Nervosa/ultraestrutura , Proteínas do Tecido Nervoso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas de Patch-Clamp , Gravidez , Células Piramidais/citologia , RNA Mensageiro/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Potenciais Sinápticos/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transdução Genética , Tirosina 3-Mono-Oxigenase/metabolismo , Valina/análogos & derivados , Valina/farmacologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
12.
Nat Neurosci ; 15(12): 1627-35, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23160044

RESUMO

During neurogenesis, neural stem/progenitor cells (NPCs) undergo an irreversible fate transition to become neurons. The Notch pathway is important for this process, and repression of Notch-dependent Hes genes is essential for triggering differentiation. However, Notch signaling often remains active throughout neuronal differentiation, implying a change in the transcriptional responsiveness to Notch during the neurogenic transition. We identified Bcl6, an oncogene, as encoding a proneurogenic factor that is required for proper neurogenesis of the mouse cerebral cortex. BCL6 promoted the neurogenic conversion by switching the composition of Notch-dependent transcriptional complexes at the Hes5 promoter. BCL6 triggered exclusion of the co-activator Mastermind-like 1 and recruitment of the NAD(+)-dependent deacetylase Sirt1, which was required for BCL6-dependent neurogenesis. The resulting epigenetic silencing of Hes5 led to neuronal differentiation despite active Notch signaling. Our findings suggest a role for BCL6 in neurogenesis and uncover Notch-BCL6-Sirt1 interactions that may affect other aspects of physiology and disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Diferenciação Celular , Proteínas de Ligação a DNA/fisiologia , Repressão Epigenética/fisiologia , Neurogênese/fisiologia , Receptores Notch/antagonistas & inibidores , Proteínas Repressoras/fisiologia , Sirtuína 1/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/fisiologia , Repressão Epigenética/genética , Feminino , Inativação Gênica , Marcação de Genes/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/genética , Gravidez , Transporte Proteico/genética , Proteínas Proto-Oncogênicas c-bcl-6 , Receptores Notch/genética , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Sirtuína 1/genética
13.
Dev Med Child Neurol ; 53(1): 13-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21087236

RESUMO

Embryonic or induced pluripotent stem cells, available in mouse and human, have emerged as powerful tools to address complex questions in neurobiology. This review focuses on major advances relating to brain development and developmental disorders. Stem cells can differentiate into many different neuronal subtypes using in vitro models mimicking relevant in vivo developmental processes, and the underlying molecular and cellular mechanisms. Disease-specific human embryonic stem cells (ESCs) and induced pluripotent stem (iPS) cells are now available and allow for the study in vitro of the pathophysiology of degenerative and neurodevelopmental hereditary and sporadic disorders, including in the near future those of the human cortex. Finally, some recent studies have shown that stem cell-derived neural progenitors and neurons could help to rebuild damaged brain circuitry, opening the possibility of cell therapy.


Assuntos
Encefalopatias/terapia , Rede Nervosa/fisiologia , Neurogênese/fisiologia , Transplante de Células-Tronco , Células-Tronco/fisiologia , Animais , Diferenciação Celular/fisiologia , Humanos , Camundongos , Transplante de Células-Tronco/métodos , Transplante de Células-Tronco/tendências
14.
Development ; 135(19): 3281-90, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18755772

RESUMO

Brain structures, whether mature or developing, display a wide diversity of pattern and shape, such as layers, nuclei or segments. The striatum in the mammalian forebrain displays a unique mosaic organization (subdivided into two morphologically and functionally defined neuronal compartments: the matrix and the striosomes) that underlies important functional features of the basal ganglia. Matrix and striosome neurons are generated sequentially during embryonic development, and segregate from each other to form a mosaic of distinct compartments. However, the molecular mechanisms that underlie this time-dependent process of neuronal segregation remain largely unknown. Using a novel organotypic assay, we identified ephrin/Eph family members as guidance cues that regulate matrix/striosome compartmentalization. We found that EphA4 and its ephrin ligands displayed specific temporal patterns of expression and function that play a significant role in the spatial segregation of matrix and striosome neurons. Analysis of the striatal patterning in ephrin A5/EphA4 mutant mice further revealed the requirement of EphA4 signalling for the proper sorting of matrix and striosome neuronal populations in vivo. These data constitute the first identification of genes involved in striatal compartmentalization, and reveal a novel mechanism by which the temporal control of guidance cues enables neuronal segregation, and thereby the generation of complex cellular patterns in the brain.


Assuntos
Padronização Corporal/fisiologia , Corpo Estriado/embriologia , Corpo Estriado/metabolismo , Efrina-A5/metabolismo , Receptor EphA4/metabolismo , Animais , Padronização Corporal/genética , Adesão Celular , Corpo Estriado/citologia , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Efrina-A5/deficiência , Efrina-A5/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Neurológicos , Gravidez , Receptor EphA4/deficiência , Receptor EphA4/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA