Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Radiol Prot ; 42(4)2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36130583

RESUMO

Individual monitoring of radiation workers is essential to ensure compliance with legal dose limits and to ensure that doses are As Low As Reasonably Achievable. However, large uncertainties still exist in personal dosimetry and there are issues with compliance and incorrect wearing of dosimeters. The objective of the PODIUM (Personal Online Dosimetry Using Computational Methods) project was to improve personal dosimetry by an innovative approach: the development of an online dosimetry application based on computer simulations without the use of physical dosimeters. Occupational doses were calculated based on the use of camera tracking devices, flexible individualised phantoms and data from the radiation source. When combined with fast Monte Carlo simulation codes, the aim was to perform personal dosimetry in real-time. A key component of the PODIUM project was to assess and validate the methodology in interventional radiology workplaces where improvements in dosimetry are needed. This paper describes the feasibility of implementing the PODIUM approach in a clinical setting. Validation was carried out using dosimeters worn by Vascular Surgeons and Interventional Cardiologists during patient procedures at a hospital in Ireland. Our preliminary results from this feasibility study show acceptable differences of the order of 40% between calculated and measured staff doses, in terms of the personal dose equivalent quantity Hp(10), however there is a greater deviation for more complex cases and improvements are needed. The challenges of using the system in busy interventional rooms have informed the future needs and applicability of PODIUM. The availability of an online personal dosimetry application has the potential to overcome problems that arise from the use of current dosimeters. In addition, it should increase awareness of radiation protection among staff. Some limitations remain and a second phase of development would be required to bring the PODIUM method into operation in a hospital setting. However, an early prototype system has been tested in a clinical setting and the results from this two-year proof-of-concept PODIUM project are very promising for future development.


Assuntos
Cardiologia , Exposição Ocupacional , Estudos de Viabilidade , Humanos , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle , Doses de Radiação , Radiologia Intervencionista , Radiometria/métodos
2.
Radiat Prot Dosimetry ; 194(1): 42-56, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-33989429

RESUMO

Since 2012, the European Radiation Dosimetry Group (EURADOS) has developed its Strategic Research Agenda (SRA), which contributes to the identification of future research needs in radiation dosimetry in Europe. Continued scientific developments in this field necessitate regular updates and, consequently, this paper summarises the latest revision of the SRA, with input regarding the state of the art and vision for the future contributed by EURADOS Working Groups and through a stakeholder workshop. Five visions define key issues in dosimetry research that are considered important over at least the next decade. They include scientific objectives and developments in (i) updated fundamental dose concepts and quantities, (ii) improved radiation risk estimates deduced from epidemiological cohorts, (iii) efficient dose assessment for radiological emergencies, (iv) integrated personalised dosimetry in medical applications and (v) improved radiation protection of workers and the public. This SRA will be used as a guideline for future activities of EURADOS Working Groups but can also be used as guidance for research in radiation dosimetry by the wider community. It will also be used as input for a general European research roadmap for radiation protection, following similar previous contributions to the European Joint Programme for the Integration of Radiation Protection Research, under the Horizon 2020 programme (CONCERT). The full version of the SRA is available as a EURADOS report (www.eurados.org).


Assuntos
Monitoramento de Radiação , Proteção Radiológica , Europa (Continente) , Humanos , Doses de Radiação , Radiação Ionizante , Radiometria
3.
Phys Med ; 82: 134-143, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33611050

RESUMO

The lack of mailed dosimetry audits of proton therapy centres in Europe has encouraged researchers of EURADOS Working Group 9 (WG9) to compare response of several existing passive detector systems in therapeutic pencil beam scanning. Alanine Electron Paramagnetic Resonance dosimetry systems from 3 different institutes (ISS, Italy; UH, Belgium and IFJ PAN, Poland), natLiF:Mg, Ti (MTS-N) and natLiF:Mg, Cu, P (MCP-N) thermoluminescent dosimeters (TLDs), GD-352M radiophotoluminescent glass dosimeters (RPLGDs) and Al2O3:C optically stimulated dosimeters (OSLDs) were evaluate. Dosimeter repeatability, batch reproducibility and response in therapeutic Pencil Beam Scanning were verified for implementation as mail auditing system. Alanine detectors demonstrated the lowest linear energy transfer (LET) dependence with an agreement between measured and treatment planning system (TPS) dose below 1%. The OSLDs measured on average a 6.3% lower dose compared to TPS calculation, with no significant difference between varying modulations and ranges. Both GD-352M and MCP-N measured a lower dose than the TPS and luminescent response was dependent on the LET of the therapeutic proton beam. Thermoluminescent response of MTS-N was also found to be dependent on the LET and a higher dose than TPS was measured with the most pronounced increase of 11%. As alanine detectors are characterized by the lowest energy dependence for different parameters of therapeutic pencil beam scanning they are suitable candidates for mail auditing in proton therapy. The response of luminescence detector systems have shown promises even though more careful calibration and corrections are needed for its implementation as part of a mailed dosimetry audit system.


Assuntos
Terapia com Prótons , Bélgica , Europa (Continente) , Itália , Polônia , Prótons , Dosímetros de Radiação , Radiometria , Reprodutibilidade dos Testes , Dosimetria Termoluminescente
4.
Phys Med ; 64: 114-122, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31515010

RESUMO

A new mini-TEPC with cylindrical sensitive volume of 0.9 mm in diameter and height, and with external diameter of 2.7 mm, has been developed to work without gas flow. With such a mini counter we have measured the physical quality of the 62 MeV therapeutic proton beam of CATANA (Catania, Italy). Measurements were performed at six precise positions along the Spread-Out Bragg Peak (SOBP): 1.4, 19.4, 24.6, 29.0, 29.7 and 30.8 mm, corresponding to positions of clinical relevance (entrance, proximal, central, and distal-edge of the SOBP) or of high lineal energy transfer (LET) increment (distal-dose drop off). Without refilling the microdosimeter with new gas, the measurements were repeated at the same positions 4 months later, in order to study the stability of the response in sealed-mode operation. From the microdosimetric spectra the frequency-mean lineal energy y-F and the dose-mean lineal energy y-D were derived and compared with average LET values calculated by means of Geant4 simulations. The comparison points out, in particular, a good agreement between microdosimetric y-D and the total dose-average LET¯d, which is the average LET of the mixed radiation field, including the contribution by nuclear reactions.


Assuntos
Microtecnologia/instrumentação , Prótons , Radiometria/instrumentação , Transferência Linear de Energia , Método de Monte Carlo
5.
Phys Med Biol ; 63(23): 235007, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30468682

RESUMO

With more patients receiving external beam radiation therapy with protons, it becomes increasingly important to refine the clinical understanding of the relative biological effectiveness (RBE) for dose delivered during treatment. Treatment planning systems used in clinics typically implement a constant RBE of 1.1 for proton fields irrespective of their highly heterogeneous linear energy transfer (LET). Quality assurance tools that can measure beam characteristics and quantify or be indicative of biological outcomes become necessary in the transition towards more sophisticated RBE weighted treatment planning and for verification of the Monte Carlo and analytical based models they use. In this study the RBE for the CHO-K1 cell line in a passively delivered clinical proton spread out Bragg peak (SOBP) is determined both in vitro and using a silicon-on-insulator (SOI) microdosimetry method paired with the modified microdosimetric kinetic model. The RBE along the central axis of a SOBP with 2 Gy delivered at the middle of the treatment field was found to vary between 1.11-1.98 and the RBE for 10% cell survival between 1.07-1.58 with a 250 kVp x-ray reference radiation and between 1.19-2.34 and 0.95-1.41, respectively, for a Co60 reference. Good agreement was found between RBE values calculated from the SOI-microdosimetry-MKM approach and in vitro. A strong correlation between proton lineal energy and RBE was observed particularly in the distal end and falloff of the SOBP.


Assuntos
Terapia com Prótons/métodos , Animais , Células CHO , Sobrevivência Celular , Cricetinae , Cricetulus , Relação Dose-Resposta à Radiação , Humanos , Transferência Linear de Energia , Método de Monte Carlo , Terapia com Prótons/efeitos adversos , Eficiência Biológica Relativa
6.
Radiat Prot Dosimetry ; 182(2): 252-257, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669096

RESUMO

Measurements of the dose equivalent at different distances from the isocenter of the proton therapy center at iThemba LABS were previously performed with a tissue-equivalent proportional counter (TEPC). These measurements showed that the scattered radiation levels were one or two orders of magnitude higher in comparison to other passive scattering delivery systems. In order to reduce these radiation levels, additional shielding was installed shortly after the measurements were done. Therefore, the aim of this work is to quantify and assess the reduction of the secondary doses delivered in the proton therapy room at iThemba LABS after the installation of the additional shielding. This has been performed by measuring microdosimetric spectra with a TEPC at 11 locations around the isocenter when a clinical modulated beam of 200 MeV proton was impinging onto a water phantom placed at the isocenter.


Assuntos
Terapia com Prótons , Radiometria/métodos , Humanos , Modelos Anatômicos , Proteção Radiológica , Espalhamento de Radiação , África do Sul
7.
Radiat Prot Dosimetry ; 170(1-4): 208-12, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27143793

RESUMO

Recent studies demonstrated that lens opacities can occur at lower radiation doses than previously accepted. In view of these studies, the International Commission of Radiological Protection recommended in 2011 to reduce the eye lens dose limit from 150 mSv/y to 20 mSv/y. This implies in the need of monitoring doses received by the eye lenses. In this study, small rod radiophotoluminescent glass dosemeters (GD-300 series; AGC, Japan) were characterized in terms of their energy (ISO 4037 X-rays narrow spectrum series, S-Cs and S-Co) and angular dependence (0  up to 90 degrees, with 2 ISO energies: N-60 and S-Cs). All acquisitions were performed at SCK•CEN-Belgium, using the ORAMED proposed cylindrical phantom. For selected energies (N-60, N-80, N-100, N-120 and N-250), the response of dosemeters irradiated on the ISO water slab phantom, at the Ruder Boskovic Institute-Croatia, was compared to those irradiated on the cylindrical phantom. GD-300 series showed good energy dependence, relative to S-Cs, on the cylindrical phantom. From 0 up to 45 degrees, the dosemeters showed no significant angular dependence, regardless whether they were tested when placed vertically or horizontally on the cylindrical phantom. However, at higher angles, some angular dependence was observed, mainly when the dosemeters were irradiated with low-energy photons (N-60). Results showed that GD-300 series have good properties related to Hp(3), although some improvements may be necessary.


Assuntos
Cristalino/efeitos da radiação , Exposição Ocupacional/análise , Imagens de Fantasmas , Monitoramento de Radiação/instrumentação , Proteção Radiológica/métodos , Bélgica , Croácia , Vidro , Humanos , Modelos Lineares , Método de Monte Carlo , Exposição Ocupacional/prevenção & controle , Fótons , Doses de Radiação , Dosímetros de Radiação , Monitoramento de Radiação/métodos , Proteção Radiológica/instrumentação , Reprodutibilidade dos Testes , Raios X
8.
Radiat Prot Dosimetry ; 170(1-4): 336-41, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26541188

RESUMO

The formation of secondary high-energy neutrons in proton therapy can be a concern for radiation protection of staff. In this joint intercomparative study (CERN, SCK•CEN and IBA/IRISIB/ULB), secondary neutron doses were assessed with different detectors in several positions in the Proton Therapy Centre, Essen (Germany). The ambient dose equivalent H(*)(10) was assessed with Berthold LB 6411, WENDI-2, tissue-equivalent proportional counter (TEPC) and Bonner spheres (BS). The personal dose equivalent Hp(10) was measured with two types of active detectors and with bubble detectors. Using spectral and basic angular information, the reference Hp(10) was estimated. Results concerning staff exposure show H(*)(10) doses between 0.5 and 1 nSv/monitoring unit in a technical room. The LB 6411 showed an underestimation of H(*)(10), while WENDI-2 and TEPC showed good agreement with the BS data. A large overestimation for Hp(10) was observed for the active personal dosemeters, while the bubble detectors showed only a slight overestimation.


Assuntos
Nêutrons , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle , Terapia com Prótons/instrumentação , Proteção Radiológica/instrumentação , Radiometria/instrumentação , Algoritmos , Alemanha , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Terapia com Prótons/métodos , Doses de Radiação , Monitoramento de Radiação , Proteção Radiológica/métodos , Radiometria/métodos
9.
Radiat Prot Dosimetry ; 170(1-4): 78-81, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26715777

RESUMO

In 2012, the European Radiation Dosimetry Group (EURADOS) performed an intercomparison for neutron dosemeters that are intended to measure personal dose equivalent, Hp(10). A total of 31 participants registered with 34 dosimetry systems. The irradiation tests were chosen to provide the participants with useful information on their dosimetry systems, i.e. linearity, reproducibility, responses for different energies and angles and to simulated workplace fields. This paper gives details of the extensive information derived from the exercise.


Assuntos
Exposição Ocupacional/análise , Doses de Radiação , Dosímetros de Radiação , Monitoramento de Radiação/instrumentação , Calibragem , Europa (Continente) , Humanos , Modelos Lineares , Nêutrons , Exposição Ocupacional/prevenção & controle , Monitoramento de Radiação/métodos , Proteção Radiológica/instrumentação , Proteção Radiológica/métodos , Reprodutibilidade dos Testes
10.
Radiat Prot Dosimetry ; 168(2): 223-34, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25752758

RESUMO

Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org).


Assuntos
Pesquisa Biomédica , Monitoramento de Radiação/normas , Proteção Radiológica , Radiação Ionizante , Radiometria/normas , Europa (Continente) , Guias como Assunto , Humanos , Doses de Radiação
11.
Phys Med ; 31(8): 1112-1117, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26439858

RESUMO

PURPOSE: Point detectors are frequently used to measure patient's maximum skin dose (MSD) in fluoroscopically-guided interventional procedures (IP). However, their performance and ability to detect the actual MSD are rarely evaluated. The present study investigates the sampling uncertainty associated with the use of grids of point detectors to measure MSD in IP. METHOD: Chemoembolisation of the liver (CE), percutaneous coronary intervention (PCI) and neuroembolisation (NE) procedures were studied. Spatial dose distributions were measured with XR-RV3 Gafchromic(®) films for 176 procedures. These distributions were used to simulate measurements performed using grids of detectors such as thermoluminescence detectors, with detector spacing from 1.4 up to 10 cm. RESULTS: The sampling uncertainty was the highest in PCI and NE procedures. With 40 detectors covering the film area (36 cm × 44 cm), the maximum dose would be on average 86% and 63% of the MSD measured with Gafchromic(®) films in CE and PCI procedures, respectively. In NE procedures, with 27 detectors covering the film area (14 cm × 35 cm), the maximum dose measured would be on average 82% of the MSD obtained with the Gafchromic(®) films. CONCLUSION: Thermoluminescence detectors show good energy and dose response in clinical beam qualities. However the poor spatial resolution of such point-like dosimeters may far outweigh their good dosimetric properties. The uncertainty from the sampling procedure should be estimated when point detectors are used in IP because it may lead to strong underestimation of the MSD.


Assuntos
Quimioembolização Terapêutica/métodos , Intervenção Coronária Percutânea/métodos , Doses de Radiação , Pele/efeitos da radiação , Fluoroscopia , Dosimetria Termoluminescente , Incerteza
12.
Radiat Prot Dosimetry ; 164(1-2): 138-42, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25316909

RESUMO

To help operators acknowledge patient dose during interventional procedures, EURADOS WG-12 focused on measuring patient skin dose using XR-RV3 gafchromic films, thermoluminescent detector (TLD) pellets or 2D TL foils and on investigating possible correlation to the on-line dose indicators such as fluoroscopy time, Kerma-area product (KAP) and cumulative air Kerma at reference point (CK). The study aims at defining non-centre-specific European alert thresholds for skin dose in three interventional procedures: chemoembolization of the liver (CE), neuroembolization (NE) and percutaneous coronary interventions (PCI). Skin dose values of >3 Gy (ICRP threshold for skin injuries) were indeed measured in these procedures confirming the need for dose indicators that correlate with maximum skin dose (MSD). However, although MSD showed fairly good correlation with KAP and CK, several limitations were identified challenging the set-up of non-centre-specific European alert thresholds. This paper presents preliminary results of this wide European measurement campaign and focuses on the main challenges in the definition of European alert thresholds.


Assuntos
Procedimentos Cirúrgicos Cardiovasculares/métodos , Radiografia Intervencionista/métodos , Radiometria/instrumentação , Pele/diagnóstico por imagem , Raios X , Absorção de Radiação , Humanos , Concentração Máxima Permitida , Radiometria/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fenômenos Fisiológicos da Pele/efeitos da radiação
13.
Radiat Prot Dosimetry ; 163(2): 181-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24795393

RESUMO

More and more anaesthetists are getting involved in interventional radiology procedures and so it is important to know the radiation dose and to optimise protection for anaesthetists. In this study, based on Monte Carlo simulations and field measurements, both the whole-body doses and eye lens dose of anaesthetists were studied. The results showed that the radiation exposure to anaesthetists not only depends on their workload, but also largely varies with their standing positions and beam projections during interventional procedures. The simulation results showed that the effective dose to anaesthetists may vary with their standing positions and beam projections to more than a factor of 10, and the eye lens dose may vary with the standing positions and beam projections to more than a factor of 200. In general, a close position to the bed and the left lateral (LLAT) beam projection will bring a high exposure to anaesthetists. Good correlations between the eye lens dose and the doses at the neck, chest and waist over the apron were observed from the field measurements. The results indicate that adequate arrangements of anaesthesia device or other monitoring equipment in the fluoroscopy rooms are useful measures to reduce the radiation exposure to anaesthetists, and anaesthetists should be aware that they will receive the highest doses under left lateral beam projection.


Assuntos
Anestesiologia/estatística & dados numéricos , Cristalino , Exposição Ocupacional/estatística & dados numéricos , Postura , Radiografia Intervencionista/estatística & dados numéricos , Contagem Corporal Total/estatística & dados numéricos , Absorção de Radiação , Simulação por Computador , Humanos , Modelos Estatísticos , Método de Monte Carlo , Exposição Ocupacional/prevenção & controle , Proteção Radiológica/estatística & dados numéricos , Medição de Risco/métodos , Contagem Corporal Total/métodos , Carga de Trabalho/estatística & dados numéricos , Raios X
14.
J Radiol Prot ; 34(3): 509-28, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24938591

RESUMO

Monte Carlo calculations were used to investigate the efficiency of radiation protection equipment in reducing eye and whole body doses during fluoroscopically guided interventional procedures. Eye lens doses were determined considering different models of eyewear with various shapes, sizes and lead thickness. The origin of scattered radiation reaching the eyes was also assessed to explain the variation in the protection efficiency of the different eyewear models with exposure conditions. The work also investigates the variation of eye and whole body doses with ceiling-suspended shields of various shapes and positioning. For all simulations, a broad spectrum of configurations typical for most interventional procedures was considered. Calculations showed that 'wrap around' glasses are the most efficient eyewear models reducing, on average, the dose by 74% and 21% for the left and right eyes respectively. The air gap between the glasses and the eyes was found to be the primary source of scattered radiation reaching the eyes. The ceiling-suspended screens were more efficient when positioned close to the patient's skin and to the x-ray field. With the use of such shields, the Hp(10) values recorded at the collar, chest and waist level and the Hp(3) values for both eyes were reduced on average by 47%, 37%, 20% and 56% respectively. Finally, simulations proved that beam quality and lead thickness have little influence on eye dose while beam projection, the position and head orientation of the operator as well as the distance between the image detector and the patient are key parameters affecting eye and whole body doses.


Assuntos
Imagens de Fantasmas , Proteção Radiológica/instrumentação , Radiologia Intervencionista , Dispositivos de Proteção dos Olhos , Cristalino , Método de Monte Carlo , Radiometria , Contagem Corporal Total
15.
J Radiol Prot ; 33(3): 635-45, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23803582

RESUMO

Measurements of doses to hands, legs and eyes are reported for operators in four different hospitals performing vertebroplasty or kyphoplasty. The results confirm that occupational doses can be high for interventional spine procedures. Extremity and eye lens doses were measured with thermoluminescent dosimeters positioned on the ring fingers, wrists, legs and near the eyes of interventional radiologists and neurosurgeons, over a period of 15 months. Doses were generally larger on the left side for all positions monitored. The median dose to the left finger was 225 µSv per procedure, although a maximum of 7.3 mSv was found. The median dose to the right finger was 118 µSv, but with an even higher maximum of 7.7 mSv. A median left eye dose of 34 µSv (maximum 836 µSv) was found, while the legs received the lowest doses with a median of 13 µSv (maximum 332 µSv) to the left leg. Annual dose to the hand assessed by the cumulated doses almost reached the annual dose limit of 500 mSv, while annual dose to the eyes exceeded the eye lens dose limit of 20 mSv yr(-1). Different x-ray systems and radiation protection measures were tested, like the use of lead gloves and glasses, tweezers, cement delivery systems and a magnetic navigation system. These measurements showed that doses can be significantly reduced. The use of lead glasses is strongly recommended for protection of the eyes.


Assuntos
Extremidades/efeitos da radiação , Cristalino/efeitos da radiação , Corpo Clínico , Exposição Ocupacional , Doses de Radiação , Radiografia Intervencionista , Humanos , Cifoplastia , Exposição Ocupacional/prevenção & controle , Proteção Radiológica , Dosimetria Termoluminescente , Vertebroplastia
16.
Endoscopy ; 44(4): 408-21, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22438152

RESUMO

This article expresses the current view of the European Society of Gastrointestinal Endoscopy (ESGE) about radiation protection for endoscopic procedures, in particular endoscopic retrograde cholangiopancreatography (ERCP). Particular cases, including pregnant women and pediatric patients, are also discussed. This Guideline was developed by a group of endoscopists and medical physicists to ensure that all aspects of radiation protection are adequately dealt with. A two-page executive summary of evidence statements and recommendations is provided. The target readership for this Guideline mostly includes endoscopists, anesthesiologists, and endoscopy assistants who may be exposed to X-rays during endoscopic procedures.


Assuntos
Colangiopancreatografia Retrógrada Endoscópica/instrumentação , Colangiopancreatografia Retrógrada Endoscópica/normas , Exposição Ocupacional/análise , Segurança do Paciente/normas , Monitoramento de Radiação/normas , Proteção Radiológica/normas , Adulto , Criança , Colangiopancreatografia por Ressonância Magnética , Endossonografia , Feminino , Filtração , Fluoroscopia/métodos , Fluoroscopia/normas , Pessoal de Saúde , Humanos , Educação de Pacientes como Assunto , Gravidez , Complicações na Gravidez/diagnóstico , Garantia da Qualidade dos Cuidados de Saúde/legislação & jurisprudência , Doses de Radiação , Monitoramento de Radiação/métodos , Suíça
17.
Radiat Prot Dosimetry ; 144(1-4): 515-20, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21233097

RESUMO

The Work Package 4 of the ORAMED project, a collaborative project (2008-11) supported by the European Commission within its seventh Framework Programme, is concerned with the optimisation of the extremity dosimetry of medical staff in nuclear medicine. To evaluate the extremity doses and dose distributions across the hands of medical staff working in nuclear medicine departments, an extensive measurement programme has been started in 32 nuclear medicine departments in Europe. This was done using a standard protocol recording all relevant information for radiation exposure, i.e. radiation protection devices and tools. This study shows the preliminary results obtained for this measurement campaign. For diagnostic purposes, the two most-used radionuclides were considered: (99m)Tc and (18)F. For therapeutic treatments, Zevalin(®) and DOTATOC (both labelled with (90)Y) were chosen. Large variations of doses were observed across the hands depending on different parameters. Furthermore, this study highlights the importance of the positioning of the extremity dosemeter for a correct estimate of the maximum skin doses.


Assuntos
Extremidades/efeitos da radiação , Medicina Nuclear , Exposição Ocupacional/prevenção & controle , Monitoramento de Radiação/métodos , Proteção Radiológica/métodos , Radiometria/métodos , Europa (Continente) , Dedos/efeitos da radiação , Radioisótopos de Flúor/análise , Humanos , Medicina Nuclear/métodos , Doses de Radiação , Radioisótopos/análise , Reprodutibilidade dos Testes , Pele/efeitos da radiação , Tecnécio/análise , Recursos Humanos
18.
Radiat Prot Dosimetry ; 144(1-4): 453-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21186215

RESUMO

The work package 3 of the ORAMED project, Collaborative Project (2008-11) supported by the European Commission within its seventh Framework Programme, is focused on the optimisation of the use of active personal dosemeters (APDs) in interventional radiology and cardiology (IR/IC). Indeed, a lack of appropriate APD devices is identified for these specific fields. Few devices can detect low-energy X rays (20-100 keV), and none of them are specifically designed for working in pulsed radiation fields. The work presented in this paper consists in studying the behaviour of some selected APDs deemed suitable for application in IR/IC. For this purpose, measurements under laboratory conditions, both with continuous and pulsed X-ray beams, and tests in real conditions on site in different European hospitals were performed. This study highlights the limitations of APDs for this application and the need of improving the APD technology so as to fulfil all needs in the IR/IC field.


Assuntos
Cardiologia , Exposição Ocupacional/prevenção & controle , Monitoramento de Radiação/instrumentação , Proteção Radiológica/instrumentação , Radiologia Intervencionista , Radiometria/instrumentação , Desenho de Equipamento , Europa (Continente) , Hospitais , Humanos , Laboratórios , Método de Monte Carlo , Equipamentos de Proteção , Monitoramento de Radiação/métodos , Proteção Radiológica/métodos , Radiação Ionizante , Radiometria/métodos , Recursos Humanos , Raios X
19.
Radiat Prot Dosimetry ; 144(1-4): 442-7, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21183540

RESUMO

The main objective of WP1 of the ORAMED (Optimization of RAdiation protection for MEDical staff) project is to obtain a set of standardised data on extremity and eye lens doses for staff in interventional radiology (IR) and cardiology (IC) and to optimise staff protection. A coordinated measurement program in different hospitals in Europe will help towards this direction. This study aims at analysing the first results of the measurement campaign performed in IR and IC procedures in 34 European hospitals. The highest doses were found for pacemakers, renal angioplasties and embolisations. Left finger and wrist seem to receive the highest extremity doses, while the highest eye lens doses are measured during embolisations. Finally, it was concluded that it is difficult to find a general correlation between kerma area product and extremity or eye lens doses.


Assuntos
Cardiologia/métodos , Extremidades/efeitos da radiação , Cristalino/efeitos da radiação , Exposição Ocupacional/prevenção & controle , Monitoramento de Radiação/métodos , Proteção Radiológica/métodos , Proteção Radiológica/normas , Radiologia Intervencionista/métodos , Simulação por Computador , Humanos , Cooperação Internacional , Doses de Radiação , Radiometria/métodos , Eficiência Biológica Relativa , Medição de Risco , Inquéritos e Questionários , Dosimetria Termoluminescente/métodos , Recursos Humanos
20.
Radiat Prot Dosimetry ; 131(1): 62-6, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18723854

RESUMO

Some medical applications are associated with high doses to the extremities of the staff exposed to ionising radiation. At workplaces in nuclear medicine, interventional radiology, interventional cardiology and brachytherapy, extremities can be the limiting organs as far as regulatory dose limits for workers are concerned. However, although the need for routine extremity monitoring is clear for these applications, no data about the status of routine extremity monitoring reported by different countries was collected and analysed so far, at least at a European level. In this article, data collected from seven European countries are presented. They are compared with extremity doses extracted from dedicated studies published in the literature which were reviewed in a previous publication. The analysis shows that dedicated studies lead to extremity doses significantly higher than the reported doses, suggesting that either the most exposed workers are not monitored, or the dosemeters are not routinely worn or not worn at appropriate positions.


Assuntos
Corpo Clínico , Exposição Ocupacional , Doses de Radiação , Monitoramento de Radiação , Radiometria/instrumentação , Radioterapia , Europa (Continente) , Extremidades , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA