Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 9: 730925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604188

RESUMO

Chemotherapy for the treatment of nasopharyngeal carcinoma (NPC) is usually associated with many side effects; therefore, its treatment options have not yet been completely resolved. Improving distribution to the targeted tumor region and enhancing the cellular uptake of drugs can efficiently alleviate the above adverse medical effects. Near-infrared (NIR) laser light-mediated photothermal therapy (PTT) and photodynamic therapy (PDT) are promising strategies for cancer treatment. In the present study, we developed an efficient multifunctional nanocluster with enhanced targeting and aggregation efficiency for PTT and PDT that is composed of a biocompatible folic acid (FA), indocyanine green (ICG) and 2-cyanobenzothiazole (CBT)-functionalized peptide labeled with an aldehyde sodium alginate-modified magnetic iron oxide nanoparticle (ASA-MNP)-based nanocarrier. FA can bind to folate receptors on cancer cell membranes to enhance nanocluster uptake. CBT-modified peptide can react with glutathione (GSH), which is typically present at higher levels in cancer cells, to form intracellular aggregates and increase the local concentration of the nanodrug. In in vitro studies, these nanodrugs displayed the desired uptake capacity by NPC cells and the ability to suppress the growth of cancer cells under laser irradiation. Animal studies validated that these nanodrugs are safe and nontoxic, efficiently accumulate in NPC tumor sites following injection via the caudal vein, and shows superior inhibition of tumor growth in a tumor-bearing mouse model upon near-infrared laser irradiation. The results indicate the potential application of the multifunctional nanoparticles (NPs), which can be used as a new method for the treatment of folate receptor-positive NPC.

2.
J Am Chem Soc ; 143(28): 10793-10803, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34250803

RESUMO

Chromophores that absorb in the tissue-penetrant far-red/near-infrared window have long served as photocatalysts to generate singlet oxygen for photodynamic therapy. However, the cytotoxicity and side reactions associated with singlet oxygen sensitization have posed a problem for using long-wavelength photocatalysis to initiate other types of chemical reactions in biological environments. Herein, silicon-Rhodamine compounds (SiRs) are described as photocatalysts for inducing rapid bioorthogonal chemistry using 660 nm light through the oxidation of a dihydrotetrazine to a tetrazine in the presence of trans-cyclooctene dienophiles. SiRs have been commonly used as fluorophores for bioimaging but have not been applied to catalyze chemical reactions. A series of SiR derivatives were evaluated, and the Janelia Fluor-SiR dyes were found to be especially effective in catalyzing photooxidation (typically 3%). A dihydrotetrazine/tetrazine pair is described that displays high stability in both oxidation states. A protein that was site-selectively modified by trans-cyclooctene was quantitatively conjugated upon exposure to 660 nm light and a dihydrotetrazine. By contrast, a previously described methylene blue catalyst was found to rapidly degrade the protein. SiR-red light photocatalysis was used to cross-link hyaluronic acid derivatives functionalized by dihydrotetrazine and trans-cyclooctenes, enabling 3D culture of human prostate cancer cells. Photoinducible hydrogel formation could also be carried out in live mice through subcutaneous injection of a Cy7-labeled hydrogel precursor solution, followed by brief irradiation to produce a stable hydrogel. This cytocompatible method for using red light photocatalysis to activate bioorthogonal chemistry is anticipated to find broad applications where spatiotemporal control is needed in biological environments.


Assuntos
Ciclo-Octanos/química , Corantes Fluorescentes/química , Rodaminas/química , Silício/química , Tetrazóis/síntese química , Animais , Catálise , Humanos , Raios Infravermelhos , Camundongos , Estrutura Molecular , Processos Fotoquímicos , Tetrazóis/química , Células Tumorais Cultivadas
3.
Cell Chem Biol ; 28(4): 503-514.e12, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33400925

RESUMO

The enhancer factors CREB-binding protein (CBP) and p300 (also known as KAT3A and KAT3B) maintain gene expression programs through lysine acetylation of chromatin and transcriptional regulators and by scaffolding functions mediated by several protein-protein interaction domains. Small molecule inhibitors that target some of these domains have been developed; however, they cannot completely ablate p300/CBP function in cells. Here we describe a chemical degrader of p300/CBP, dCBP-1. Leveraging structures of ligand-bound p300/CBP domains, we use in silico modeling of ternary complex formation with the E3 ubiquitin ligase cereblon to enable degrader design. dCBP-1 is exceptionally potent at killing multiple myeloma cells and can abolish the enhancer that drives MYC oncogene expression. As an efficient degrader of this unique class of acetyltransferases, dCBP-1 is a useful tool alongside domain inhibitors for dissecting the mechanism by which these factors coordinate enhancer activity in normal and diseased cells.


Assuntos
Proteína de Ligação a CREB/antagonistas & inibidores , Proteína p300 Associada a E1A/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína de Ligação a CREB/metabolismo , Células Cultivadas , Proteína p300 Associada a E1A/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Humanos , Masculino , Modelos Moleculares , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química
4.
Chemistry ; 26(21): 4690-4694, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32030822

RESUMO

Bioorthogonal reactions have been widely used in the biomedical field. 18 F-TCO/Tetrazine ligation is the most reactive radiolabelled inverse electron demand Diels-Alder reaction, but its application had been limited due to modest contrast ratios of the resulting conjugates. Herein, we describe the use of hydrophilic tetrazines to improve tumor-to-background contrast of neurotensin receptor targeted PET agents. PET agents were constructed using a rapid Diels-Alder reaction of the radiolabeled trans-cyclooctene (18 F-sTCO) with neurotensin (NT) conjugates of a 3,6-diaryltetrazine, 3-methyl-6-aryltetrazine, and a derivative of 3,6-di(2-hydroxyethyl)tetrazine. Although cell binding assays demonstrated all agents have comparable binding affinity, the conjugate derived from 3,6-di(2-hydroxyethyl)tetrazine demonstrated the highest tumor to muscle contrast, followed by conjugates of the 3-methyl-6-aryltetrazine and 3,6-diaryltetrazine.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma/diagnóstico por imagem , Radioisótopos de Flúor/química , Compostos Heterocíclicos/química , Tomografia por Emissão de Pósitrons/métodos , Carcinoma/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Reação de Cicloadição/métodos , Humanos
5.
Chem Commun (Camb) ; 55(17): 2485-2488, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30735213

RESUMO

An 18F-labeled trans-5-oxocene (oxoTCO) that is used to construct a PET probe for neurotensin receptor (NTR) imaging through tetrazine ligation is described here. PET probe construction proceeds with 70% RCY based on 18F-oxoTCO and is completed within seconds. The in vivo behaviour of the oxoTCO based PET probe was compared with those of analogous probes that were prepared from 18F-labeled s-TCO and d-TCO tracers. The hydrophilic 18F-oxoTCO probe showed a significantly higher tumor-to-background ratio while displaying comparable tumor uptake relative to the 18F-dTCO and 18F-sTCO derived probes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA