Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Colloid Interface Sci ; 650(Pt B): 1619-1637, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37494859

RESUMO

Over time, the interest in developing stable photosensitizers (PS) which both absorb and emit light in the red region (650 and 950 nm) has gained noticeable interest. Recently, carbon dots (CDs) have become the material of focus to act as a PS due to their high extinction coefficient, low cytotoxicity, and both high photo and thermal stability. In this work, a Federal and Drug Association (FDA) approved Near Infra-Red (NIR) organic fluorophore used for photo-imaging, indocyanine green (ICG), has been explored as a precursor to develop water-soluble red emissive CDs which possess red emission at 697 nm. Furthermore, our material was found to yield favorable red-imaging capabilities of glioblastoma stem-like cells (GSCs) meanwhile boasting low toxicity. Additionally with post modifications, our CDs have been found to have selectivity towards tumors over healthy tissue as well as crossing the blood-brain barrier (BBB) in zebrafish models.


Assuntos
Glioblastoma , Pontos Quânticos , Animais , Carbono , Glioblastoma/diagnóstico por imagem , Peixe-Zebra , Corantes Fluorescentes
2.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298513

RESUMO

Pediatric brain tumors remain a significant source of morbidity and mortality. Though developments have been made in treating these malignancies, the blood-brain barrier, intra- and inter-tumoral heterogeneity, and therapeutic toxicity pose challenges to improving outcomes. Varying types of nanoparticles, including metallic, organic, and micellar molecules of varying structures and compositions, have been investigated as a potential therapy to circumvent some of these inherent challenges. Carbon dots (CDs) have recently gained popularity as a novel nanoparticle with theranostic properties. This carbon-based modality is highly modifiable, allowing for conjugation to drugs, as well as tumor-specific ligands in an effort to more effectively target cancerous cells and reduce peripheral toxicity. CDs are being studied pre-clinically. The ClinicalTrials.gov site was queried using the search terms: brain tumor and nanoparticle, liposome, micelle, dendrimer, quantum dot, or carbon dot. At the time of this review, 36 studies were found, 6 of which included pediatric patients. Two of the six studies investigated nanoparticle drug formulations, whereas the other four studies were on varying liposomal nanoparticle formulations for the treatment of pediatric brain tumors. Here, we reviewed the context of CDs within the broader realm of nanoparticles, their development, promising pre-clinical potential, and proposed future translational utility.


Assuntos
Neoplasias Encefálicas , Nanopartículas , Pontos Quânticos , Humanos , Criança , Sistemas de Liberação de Medicamentos , Carbono/uso terapêutico , Carbono/química , Neoplasias Encefálicas/tratamento farmacológico , Lipossomos , Nanopartículas/uso terapêutico , Nanopartículas/química , Nanomedicina Teranóstica
3.
J Colloid Interface Sci ; 630(Pt A): 306-321, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36244103

RESUMO

Carbon dots (CDs) from glucose were synthesized using two of the most common bottom-up methods, namely, microwave assisted (MW) and hydrothermal carbonization (HT). Synthetic parameters such as reaction time, temperature, and precursor concentration were changed to study the effects of each parameter on CD size, structure, surface functionalities, charge, photoluminescence behavior, quantum yield, cytotoxicity, blood-brain barrier (BBB) crossing ability and bioimaging. A detailed analysis is performed to compare the structure and properties of the CDs synthesized in ten different conditions. We show that the synthesis route drastically changes the structure, properties, and related functions of glucose-derived CDs yielding two different subtypes of CDs. Surprisingly, CDs that was synthesized via HT method showed specific anticancer activity against a neuroblastoma cell line while being non-toxic towards healthy cell lines, indicating significant potential for therapeutic applications. CDs synthesized via MW crosses the BBB in zebrafish and rat models, and accumulates in neurons. CDs synthesized via MW method showed high biocompatibility and a great potential to be used for bioimaging applications in vitro and in vivo targeting neurons. Finally, a formation mechanism of CDs is proposed for both HT and MW synthesis routes.


Assuntos
Neuroblastoma , Pontos Quânticos , Ratos , Animais , Carbono/química , Pontos Quânticos/química , Micro-Ondas , Nitrogênio/química , Peixe-Zebra , Linhagem Celular , Neuroblastoma/tratamento farmacológico , Glucose
4.
Pharmaceutics ; 14(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35890360

RESUMO

The current prognosis for glioblastoma is dismal. Treatment-resistant glioblastoma stem cells (GSCs) and the failure of most drugs to reach therapeutic levels within the tumor remain formidable obstacles to successful treatment. Chalcones are aromatic ketones demonstrated to reduce malignant properties in cancers including glioblastoma. Nanomedicines can increase drug accumulation and tumor cell death. Carbon-dots are promising nanocarriers that can be easily functionalized with tumor-targeting ligands and anti-cancer drugs. Therefore, we synthesized a series of 4'-amino chalcones with the rationale that the amino group would serve as a "handle" to facilitate covalent attachment to carbon-dots and tested their cytotoxicity toward GSCs. We generated 31 chalcones (22 4'-amino and 9 4' derivatives) including 5 novel chalcones, and found that 13 had an IC50 below 10 µM in all GSC lines. After confirming that the 4-amino group was not part of the active pharmacophore, chalcones were attached to transferrin-conjugated carbon-dots. These conjugates were significantly more cytotoxic than the free chalcones, with the C-dot-transferrin-2,5, dimethoxy chalcone conjugate inducing up to 100-fold more GSC death. Several of the tested chalcones represent promising lead compounds for the development of novel anti-GSC drugs. Furthermore, designing amino chalcones for carbon-dot mediated drug delivery is a rational and effective methodology.

5.
Front Oncol ; 12: 883318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814452

RESUMO

High-risk neuroblastoma (NB) portends very poor prognoses in children. Targeting tumor metabolism has emerged as a novel therapeutic strategy. High levels of nicotinamide-adenine-dinucleotide (NAD+) are required for rapid cell proliferation. Nicotinamide phosphoribosyl transferase (NAMPT) is the rate-limiting enzyme for NAD+ salvage and is overexpressed in several cancers. Here, we determine the potential of NAMPT as a therapeutic target for NB treatment. NAMPT inhibition cytotoxicity was determined by trypan blue exclusion and LDH assays. Neuroblastoma stem cell self-renewal was evaluated by neurosphere assay. Protein expression was evaluated via Western blot. The effect of targeting NAMPT in vivo was determined using an NB1691-xenografted mouse model. Robust NAMPT expression was demonstrated in multiple N-MYC amplified, high-risk neuroblastoma cell lines. NAMPT inhibition with STF-118804 (STF) decreased ATP, induced apoptosis, and reduced NB stem cell neurosphere formation. STF treatment down-regulated N-MYC levels and abrogated AKT activation. AKT and glycolytic pathway inhibitors in combination with NAMPT inhibition induced robust, greater-than-additive neuroblastoma cell death. Lastly, STF treatment blocked neuroblastoma tumor growth in mouse xenograft models. NAMPT is a valid therapeutic target as inhibition promoted neuroblastoma cell death in vitro and prevented tumor growth in vivo. Further investigation is warranted to establish this therapy's role as an adjunctive modality.

6.
ACS Appl Bio Mater ; 5(7): 3300-3309, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35771033

RESUMO

Neuroblastoma (NB) is a pediatric malignancy affecting the peripheral nervous system. Despite recent advancements in treatment, many children affected with NB continue to submit to this illness, and new therapeutic strategies are desperately needed. In recent years, studies of carbon dots (CDs) as nanocarriers have mostly focused on the delivery of anticancer agents because of their biocompatibility, good aqueous dissolution, and photostability. Their fluorescence properties, surface functionalities, and surface charges differ on the basis of the type of precursors used and the synthetic approach implemented. At present, most CDs are used as nanocarriers by directly linking them either covalently or electrostatically to drug molecules. Though most modern CDs are synthesized from large carbon macromolecules and conjugated to anticancerous drugs, constructing CDs from the anticancerous drugs and precursors themselves to increase antitumoral activity requires further investigation. Herein, CDs were synthesized using difluoromethylornithine (DFMO), an irreversible ornithine decarboxylase inhibitor commonly used in high-risk neuroblastoma treatment regiments. In this study, NB cell lines, SMS-KCNR and SK-N-AS, were treated with DFMO, the newly synthesized DFMO CDs, and conventional DFMO conjugated to black carbon dots. Bioimaging was done to determine the cellular localization of a fluorescent drug over time. The mobility of DNA mixed with DFMO CDs was evaluated by gel electrophoresis. DFMO CDs were effectively synthesized from DFMO precursor and characterized using spectroscopic methods. The DFMO CDs effectively reduced cell viability with increasing dose. The effects were dramatic in the N-MYC-amplified line SMS-KCNR at 500 µM, which is comparable to high doses of conventional DFMO at a 60-fold lower concentration. In vitro bioimaging as well as DNA electrophoresis showed that synthesized DFMO CDs were able to enter the nucleus of neuroblastoma cells and neuronal cells and interact with DNA. Our new DFMO CDs exhibit a robust advantage over conventional DFMO because they induce comparable reductions in viability at a dramatically lower concentration.


Assuntos
Antineoplásicos , Neuroblastoma , Antineoplásicos/farmacologia , Carbono/farmacologia , Criança , Eflornitina/farmacologia , Humanos , Neuroblastoma/diagnóstico por imagem , Inibidores da Ornitina Descarboxilase/uso terapêutico
7.
Nanoscale ; 14(27): 9686-9701, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35766148

RESUMO

Carbon Dots (CDs) have recently attracted a considerable amount of attention thanks to their well-documented biocompatibility, tunable photoluminescence, and excellent water solubility. However, CDs need further analysis before their potential use in clinical trials. Previously, we reported a new type of carbon nitride dot (CND) that displayed selective cancer uptake traits attributed to structural resemblances between CNDs and glutamine. Here, the effects of surface structural differences on the cellular uptake of CNDs are further investigated to understand their selective cancer cell uptake trend. Beyond enhanced drug loading on modified CNDs, our cytotoxicity, western blotting and bioimaging studies proposed that modified CNDs' cellular uptake mechanism is thoroughly linked with ASCT2 and LAT1 transporters. Therefore, CNDs have a promising trait of selective cancer cell targeting by utilizing highly expressed transporters on cancer cells. Additionally, drug loaded CNDs exhibited improved anti-cancer efficacies towards cancer cells along with good non-tumor biocompatibilities.


Assuntos
Carbono , Neoplasias , Carbono/química , Humanos , Neoplasias/tratamento farmacológico , Nitrilas/química
8.
Cureus ; 13(8): e17099, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34527485

RESUMO

Background Hypothyroidism has been independently associated with the development of several comorbidities and is known to increase complication rates in non-spinal surgeries. However, there are limited data regarding the effects of hypothyroidism in major spine surgery. Therefore, we present the largest retrospective analysis evaluating outcomes in hypothyroid patients undergoing spinal fusion. Methods A retrospective review of the National Inpatient Sample (NIS) from 2004-2014 was performed. Patients with an International Classification of Diseases, 9th revision, Clinical Modification (ICD-9-CM) procedure code indicating spinal fusion (81.04-81.08, 81.34-81.38, 81.0x, 81.3x) were included. Patients with an ICD-9-CM diagnosis code indicating hypothyroidism (244.x) were compared to those without. Cervical and lumbar fusions were evaluated independently. Significant covariates in univariable logistic regression were utilized to construct multivariable models to analyze the effect of hypothyroidism on perioperative morbidity and mortality. Results A total of 4,149,125 patients were identified, of which 9.4% were hypothyroid. Although, hypothyroid patients had a higher risk of hematologic complications (lumbar - odds ratio [OR] 1.176, p < 0.0001; cervical - OR 1.162, p < 0.0001), they exhibited decreased in-hospital mortality (lumbar - OR .643, p < 0.0001; cervical - OR .606, p < 0.0001). Hypothyroid lumbar fusion patients also demonstrated decreased rates of perioperative myocardial infarction (MI) (OR .851, p < 0.0001). All these results were independent of patient gender. Conclusions Hypothyroid patients undergoing spinal fusion demonstrated lower rates of inpatient mortality and, in lumbar fusions, also had lower rates of acute MI when compared to their euthyroid counterparts. This suggests that hypothyroidism may offer protection against all-cause mortality and may be cardioprotective in the postoperative period for lumbar spinal fusions independent of patient gender.

9.
Neurospine ; 18(1): 147-154, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33819941

RESUMO

OBJECTIVE: Anterior cervical discectomy and fusion (ACDF) is the most common performed surgery in the cervical spine. Dysphagia is one of the most frequent complications following ACDF. Several studies have identified certain demographic and perioperative risk factors associated with increased dysphagia rates, but few have reported recent trends. Our study aims to report current trends and factors associated with the development of inpatient postoperative dysphagia after ACDF. METHODS: The National Inpatient Sample was evaluated from 2004 to 2014 and discharges with International Classification of Diseases procedure codes indicating ACDF were selected. Time trend series plots were created for the yearly treatment trends for each fusion level by dysphagia outcome. Separate univariable followed by multivariable logistic regression analyses were performed to evaluate predictors of dysphagia. RESULTS: A total of 1,212,475 ACDFs were identified in which 3.3% experienced postoperative dysphagia. A significant increase in annual dysphagia rates was observed from 2004-2014. Frailty, intraoperative neuromonitoring, 4 or more level fusions, African American race, fluid/electrolyte disorders, blood loss, and coagulopathy were all identified as significant independent risk factors for the development of postoperative dysphagia following ACDF. CONCLUSION: Postoperative dysphagia is a well-known postsurgical complication associated with ACDF. Our cohort showed a significant increase in the annual dysphagia rates independent of levels fused. We identified several risk factors associated with the development of postoperative dysphagia after ACDF.

10.
Front Oncol ; 11: 640720, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763373

RESUMO

Glioblastoma (GBM) remains one of the most lethal primary brain tumors in both adult and pediatric patients. Targeting tumor metabolism has emerged as a promising-targeted therapeutic strategy for GBM and characteristically resistant GBM stem-like cells (GSCs). Neoplastic cells, especially those with high proliferative potential such as GSCs, have been shown to upregulate UCP2 as a cytoprotective mechanism in response to chronic increased reactive oxygen species (ROS) exposure. This upregulation plays a central role in the induction of the highly glycolytic phenotype associated with many tumors. In addition to shifting metabolism away from oxidative phosphorylation, UCP2 has also been implicated in increased mitochondrial Ca2+ sequestration, apoptotic evasion, dampened immune response, and chemotherapeutic resistance. A query of the CGGA RNA-seq and the TCGA GBMLGG database demonstrated that UCP2 expression increases with increased WHO tumor-grade and is associated with much poorer prognosis across a cohort of brain tumors. UCP2 expression could potentially serve as a biomarker to stratify patients for adjunctive anti-tumor metabolic therapies, such as glycolytic inhibition alongside current standard of care, particularly in adult and pediatric gliomas. Additionally, because UCP2 correlates with tumor grade, monitoring serum protein levels in the future may allow clinicians a relatively minimally invasive marker to correlate with disease progression. Further investigation of UCP2's role in metabolic reprogramming is warranted to fully appreciate its clinical translatability and utility.

11.
J Colloid Interface Sci ; 592: 485-497, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33714764

RESUMO

Carbon dots (CDs) have been intensively studied since their discovery in 2004 because of their unique properties such as low toxicity, excellent biocompatibility, high photoluminescence (PL) and good water dispersibility. In this study metformin derived carbon dots (Met-CDs) were synthesized using a microwave assisted method. Met-CDs were meticulously characterized using ultra-violet spectroscopy (UV-vis), photoluminescence (PL), Fourier Transform Infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force (AFM) and transmission electron (TEM) microscopies. According to results of cytotoxicity studies, Met-CDs possess low-toxicity and excellent biocompatibility towards both non-tumor and tumor cell lines indicating that Met-CDs are outstanding candidates for living cell bioimaging studies. Furthermore, bioimaging studies have displayed that Met-CDs can penetrate the cell membrane and disperse throughout the cell structure including the nucleus and mitochondria. More specifically, Met-CDs tend to start localizing selectively inside the mitochondria of cancer cells, but not of non-tumor cells after 1 h of incubation. Finally, a zebrafish study confirmed that Met-CDs cross the blood-brain barrier (BBB) without the need of any other ligands. In summary, this study presents synthesis of Met-CDs which feature abilities such as mitochondrial and nucleus localizations along with BBB penetration.


Assuntos
Metformina , Pontos Quânticos , Animais , Biomarcadores , Barreira Hematoencefálica , Carbono , Sobrevivência Celular , Metformina/farmacologia , Mitocôndrias , Peixe-Zebra
12.
Nanoscale ; 13(10): 5507-5518, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33688879

RESUMO

Tumor microenvironment responsive drug delivery systems are potential approaches to reduce the acute toxicity caused by high-dose cancer chemotherapy. Notwithstanding the conventional nano-drug delivery systems, the redox and pH stimuli drug delivery systems are currently gaining attention. Therefore, the current study was designed to compare three different covalent carbon dots (C-dots) systems based on doxorubicin (dox) release profiles and cancer cell viability efficacy under acidic and physiological conditions. The C-dots nanosystems that were examined in this study are directly conjugated (C-dots-dox), pH triggered (C-dots-HBA-dox), and the redox stimuli (C-dots-S-S-dox) conjugates. The drug loading content (DLC%) of the C-dots-S-S-dox, C-dots-HBA-dox, and C-dots-dox was 34.2 ± 0.4, 60.0 ± 0.3, and 70.0 ± 0.2%, respectively, that examined by UV-vis spectral analysis. The dox release paradigms were emphasized that all three conjugates were promisingly released the dox from C-dots faster in acidic pH than in physiological pH. The displayed highest dox released percentage in the acidic medium was 74.6 ± 0.8% obtained by the pH stimuli, C-dots-HBA-dox conjugate. When introducing the redox inducer, dithiothreitol (DTT), preferentially, the redox stimuli C-dot-S-S-dox conjugate demonstrated a faster dox release at acidic pH than in the pH 7.4. The SJGBM2 cell viability experiments revealed that the pH stimuli, C-dots-HBA-dox conjugate, displayed a significant cell viability drop in the artificially acidified pH 6.4 medium. However, in the physiological pH, the redox stimuli, C-dots-S-S-dox conjugate, was promising over the pH stimuli C-dots-HBA-dox, exhibiting cell viability of 60%, though its' efficacy dropped slightly in the artificially acidified pH 6.4 medium. Moreover, the current study illustrates the stimuli conjugates' remarkable efficacy on sustain drug release than direct amide linkage.


Assuntos
Antibióticos Antineoplásicos , Carbono , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Oxirredução
13.
Neurospine ; 18(1): 79-86, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33211950

RESUMO

OBJECTIVE: Obesity has become a public health crisis and continues to be on the rise. An elevated body mass index has been linked to higher rates of spinal degenerative disease requiring surgical intervention. Limited studies exist that evaluate the effects of obesity on perioperative complications in patients undergoing anterior cervical discectomy and fusion (ACDF). Our study aims to determine the incidence of obesity in the ACDF population and the effects it may have on postoperative inpatient complications. METHODS: The National Inpatient Sample was evaluated from 2004 to 2014 and discharges with International Classification of Diseases procedure codes indicating ACDF were identified. This cohort was stratified into patients with diagnosis codes indicating obesity. Separate univariable followed by multivariable logistic regression analysis were performed for the likelihood of perioperative inpatient outcomes among the patients with obesity. RESULTS: From 2004 to 2014, estimated 1,212,475 ACDFs were identified in which 9.2% of the patients were obese. The incidence of obesity amongst ACDF patients has risen dramatically during those years from 5.8% to 13.4%. Obese ACDF patients had higher inpatient likelihood of dysphagia, neurological, respiratory, and hematologic complications as well as pulmonary emboli, and intraoperative durotomy. CONCLUSION: Obesity is a well-established modifiable comorbidity that leads to increased perioperative complications in various surgical specialties. We present one of the largest retrospective analyses evaluating the effects of obesity on inpatient complications following ACDF. Our data suggest that the number of obese patients undergoing ACDF is steadily increasing and had a higher inpatient likelihood of developing perioperative complications.

14.
Nanoscale ; 12(14): 7927-7938, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32232249

RESUMO

Pediatric glioblastomas are known to be one of the most dangerous and life-threatening cancers among many others regardless of the low number of cases reported. The major obstacles in the treatment of these tumors can be identified as the lack of prognosis data and the therapeutic requirement to be able to cross the blood-brain barrier (BBB). Due to this lack of data and techniques, pediatric patients could face drastic side effects over a long-time span even after survival. Therefore, in this study, the capability of non-toxic carbon nitride dots (CNDs) to selectively target pediatric glioblastoma cells was studied in vitro. Furthermore, the nanocarrier capability and efficiency of CNDs were also investigated through conjugation of a chemotherapeutic agent and transferrin (Tf) protein. Gemcitabine (GM) was introduced into the system as a chemotherapeutic agent, which has never been successfully used for the treatment of any central nervous system (CNS) cancer. More than 95% of selective damage of SJGBM2 glioma cells was observed at 1 µM of CN-GM conjugate with almost 100% viability of non-cancerous HEK293 cells, although this ability was diminished at lower concentrations. However, further conjugation of Tf to obtain CN-GM-Tf allowed the achievement of selective targeting and prominent anti-cancer activity at a 100-fold lower concentration of 10 nM. Furthermore, both conjugates were capable of effectively damaging several other brain tumor cells, which were not well responsive towards the single treatment of GM. The capability of BBB penetration of the conjugates was observed using a zebrafish model, which confirms the CNDs' competence as an excellent nanocarrier to the CNS.


Assuntos
Barreira Hematoencefálica/metabolismo , Desoxicitidina/análogos & derivados , Portadores de Fármacos/química , Nitrilas/química , Pontos Quânticos/química , Animais , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/química , Desoxicitidina/metabolismo , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Portadores de Fármacos/metabolismo , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Humanos , Larva/efeitos dos fármacos , Larva/metabolismo , Transferrina/química , Transferrina/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Gencitabina
15.
J Neurooncol ; 147(2): 317-326, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32096068

RESUMO

PURPOSE: Glioblastoma (GBM) remains one of the most lethal primary brain tumors in children and adults. Targeting tumor metabolism has emerged as a promising-targeted therapeutic strategy for GBM and characteristically resistant GBM stem-like cells (GSCs). METHODS: Gene expression data was obtained from the online patient-histology database, GlioVis. GSC mitochondria morphology was examined by TEM. Cell viability and effect on GSC self-renewal was determined via MTS assay and neurosphere assay, respectively. Proteins were evaluated by Western Blot. RESULTS: Enzymes necessary for ketone catabolism (BDH1, OXCT1 and ACAT1) are significantly downregulated in adult and pediatric GBM. GSC mitochondrial ultrastructure suggested defects in oxidative phosphorylation. Treatment of both GBM and GSC cell lines resulted in dose-dependent decreases in viability in response to glycolytic inhibitor 2-deoxy-D-glucose (2-DG), and ketone body Acetoacetate (AA), but not ß-hydroxybutyrate (ßHB). AA induced apoptosis was confirmed by western blot analysis, indicating robust caspase activation and PARP cleavage. AA reduced neurosphere formation at concentrations as low as 1 mM. Combined treatment of low dose 2-DG (50 µM) with AA resulted in more cell death than either treatment alone. The effect was greater than additive at low concentrations of AA, reducing viability approximately 50% at 1 mM AA. AA was found to directly upregulate mitochondrial uncoupling protein 2 (UCP2), which may explain this potential drug synergism via multi-faceted inhibition of the glycolytic pathway. CONCLUSION: Targeting the metabolic pathway of GBM via glycolytic inhibition in conjunction with ketogenic diet or exogenous ketone body supplementation warrants further investigation as a promising adjunctive treatment to conventional therapy.


Assuntos
Acetoacetatos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Proliferação de Células , Desoxiglucose/farmacologia , Glioblastoma/patologia , Glicólise/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Ácido 3-Hidroxibutírico/farmacologia , Adulto , Antimetabólitos/farmacologia , Neoplasias Encefálicas/patologia , Sobrevivência Celular , Criança , Quimioterapia Combinada , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células Tumorais Cultivadas
16.
Nanoscale ; 11(13): 6192-6205, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30874284

RESUMO

Most of the dual nano drug delivery systems fail to enter malignant brain tumors due to a lack of proper targeting systems and the size increase of the nanoparticles after drug conjugation. Therefore, a triple conjugated system was developed with carbon dots (C-dots), which have an average particle size of 1.5-1.7 nm. C-dots were conjugated with transferrin (the targeted ligand) and two anti-cancer drugs, epirubicin and temozolomide, to build the triple conjugated system in which the average particle size was increased only up to 3.5 nm. In vitro studies were performed with glioblastoma brain tumor cell lines SJGBM2, CHLA266, CHLA200 (pediatric) and U87 (adult). The efficacy of the triple conjugated system (dual drug conjugation along with transferrin) was compared to those of dual conjugated systems (single drug conjugation along with transferrin), non-transferrin C-dots-drugs, and free drug combinations. Transferrin conjugated samples displayed the lowest cell viability even at a lower concentration. Among the transferrin conjugated samples, the triple conjugated system (C-dots-trans-temo-epi (C-DT)) was more strongly cytotoxic to brain tumor cell lines than dual conjugated systems (C-dots-trans-temo (C-TT) and C-dots-trans-epi (C-ET)). C-DT increased the cytotoxicity to 86% in SJGBM2 at 0.01 µM while C-ET and C-TT reduced it only to 33 and 8%, respectively. Not only did triple conjugated C-DT increase the cytotoxicity, but also the two-drug combination in C-DT displayed a synergistic effect.


Assuntos
Carbono/química , Portadores de Fármacos/química , Pontos Quânticos/química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Epirubicina/química , Epirubicina/farmacologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Modelos Biológicos , Pontos Quânticos/toxicidade , Espectrometria de Fluorescência , Temozolomida/química , Temozolomida/farmacologia , Transferrina/química
17.
Cancers (Basel) ; 11(3)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871215

RESUMO

Glioblastoma (GBM) has a dismal prognosis and successful elimination of GBM stem cells (GSCs) is a high-priority as these cells are responsible for tumor regrowth following therapy and ultimately patient relapse. Natural products and their derivatives continue to be a source for the development of effective anticancer drugs and have been shown to effectively target pathways necessary for cancer stem cell self-renewal and proliferation. We generated a series of curcumin inspired bis-chalcones and examined their effect in multiple patient-derived GSC lines. Of the 19 compounds synthesized, four analogs robustly induced GSC death in six separate GSC lines, with a half maximal inhibitory concentration (IC50) ranging from 2.7⁻5.8 µM and significantly reduced GSC neurosphere formation at sub-cytotoxic levels. Structural analysis indicated that the presence of a methoxy group at position 3 of the lateral phenylic appendages was important for activity. Pathway and drug connectivity analysis of gene expression changes in response to treatment with the most active bis-chalcone 4j (the 3,4,5 trimethoxy substituted analog) suggested that the mechanism of action was the induction of endoplasmic reticulum (ER) stress and unfolded protein response (UPR) mediated cell death. This was confirmed by Western blot analysis in which 4j induced robust increases in CHOP, p-jun and caspase 12. The UPR is believed to play a significant role in GBM pathogenesis and resistance to therapy and as such represents a promising therapeutic target.

18.
Cancers (Basel) ; 11(2)2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30709011

RESUMO

Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults, and despite optimized treatment options, median survival remains dismal. Contemporary evidence suggests disease recurrence results from expansion of a robustly radioresistant subset of GBM progenitor cells, termed GBM stem cells (GSCs). In this study, we utilized transmission electron microscopy to uncover ultrastructural effects on patient-derived GSC lines exposed to supratherapeutic radiotherapy levels. Elevated autophagosome formation and increased endoplasmic reticulum (ER) internal diameter, a surrogate for ER stress and activation of unfolded protein response (UPR), was uncovered. These observations were confirmed via protein expression through Western blot. Upon interrogating genomic data from an open-access GBM patient database, overexpression of UPR-related chaperone protein genes was inversely correlated with patient survival. This indicated controlled UPR may play a role in promoting radioresistance. To determine if potentiating UPR further can induce apoptosis, we exposed GSCs to radiation with an ER stress-inducing drug, 2-deoxy-D-glucose (2-DG), and found dose-dependent decreases in viability and increased apoptotic marker expression. Taken together, our results indicate GSC radioresistance is, in part, achieved by overexpression and overactivation of ER stress-related pathways, and this effect can be overcome via potentiation of UPR, leading to loss of GSC viability.

19.
Bioconjug Chem ; 30(1): 111-123, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30525487

RESUMO

In contrast to the recent immense attention in carbon nitride quantum dots (CNQDs) as a heteroatom-doped carbon quantum dot (CQD), their biomedical applications have not been thoroughly investigated. Targeted cancer therapy is a prominently researched area in the biomedical field. Here, the ability of CNQDs as a selective bioimaging nanomaterial was investigated to assist targeted cancer therapy. CNQDs were first synthesized using four different precursor sets involving urea derivatives, and the characteristics were compared to select the best candidate material for bioapplications. Characterization techniques such as UV-vis, luminescence, X-ray photoelectron spectroscopy, nuclear magnetic resonance spectroscopy, and transmission electron microscopy were used. These CNQDs were analyzed in in vitro studies of bioimaging and labeling using pediatric glioma cells (SJGBM2) for possible selective biolabeling and nanodistribution inside the cell membrane. The in vitro cellular studies were conducted under long-wavelength emission without the interference of blue autofluorescence. Thus, excitation-dependent emission of CNQDs was proved to be advantageous. Importantly, CNQDs selectively entered SJGBM2 tumor cells, while it did not disperse into normal human embryonic kidney cells (HEK293). The distribution studies in the cell cytoplasm indicated that CNQDs dispersed into lysosomes within approximately 6 h after the incubation. The CNQDs exhibited great potential as a possible nanomaterial in selective bioimaging and drug delivery for targeted cancer therapy.


Assuntos
Diagnóstico por Imagem/instrumentação , Nitrilas/química , Pontos Quânticos/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Células HEK293 , Humanos , Luminescência , Nitrilas/farmacocinética , Nitrilas/farmacologia , Ouriços-do-Mar/embriologia , Distribuição Tecidual
20.
World Neurosurg ; 122: 106-111, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30391618

RESUMO

BACKGROUND: Surgical stabilization of thoracic spine fractures is recommended for unstable patterns, yet much debate exists regarding the best approach for reduction. The aim of this article was to report the outcome of a novel method for stabilization of a fish-mouth thoracic spine fracture. METHODS: A retrospective patient chart review was conducted. Data collected included blood loss, operative time, length of stay, perioperative complications, neurologic deficits, and secondary procedures. The patient underwent percutaneous reduction of a hyperextension injury to the thoracic spine. Sufficient reduction was achieved through a percutaneous approach, followed by sequential distraction of 1 rod with sequential locking of the contralateral rod to maintain deformity correction. Electrophysiologic monitoring was used during the procedure. RESULTS: Sufficient fracture reduction was achieved and evaluated on postoperative computed tomography. Operative time was 145 minutes, and estimated blood loss was 120 mL. There were no cerebrospinal fluid leaks, iatrogenic neurologic deficits, implant failures, other systemic events or revisions during the 8-month follow-up. CONCLUSIONS: This article describes the feasibility of using a novel model for reduction and stabilization of fish-mouth thoracic spine fracture with minimal soft tissue violation.


Assuntos
Fixação Interna de Fraturas/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Fraturas da Coluna Vertebral/cirurgia , Vértebras Torácicas/lesões , Vértebras Torácicas/cirurgia , Idoso , Humanos , Masculino , Monitorização Intraoperatória , Fraturas da Coluna Vertebral/diagnóstico por imagem , Vértebras Torácicas/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA