Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(5): 101516, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38626769

RESUMO

Non-small cell lung cancer (NSCLC) is known for high relapse rates despite resection in early stages. Here, we present the results of a phase I clinical trial in which a dendritic cell (DC) vaccine targeting patient-individual neoantigens is evaluated in patients with resected NSCLC. Vaccine manufacturing is feasible in six of 10 enrolled patients. Toxicity is limited to grade 1-2 adverse events. Systemic T cell responses are observed in five out of six vaccinated patients, with T cell responses remaining detectable up to 19 months post vaccination. Single-cell analysis indicates that the responsive T cell population is polyclonal and exhibits the near-entire spectrum of T cell differentiation states, including a naive-like state, but excluding exhausted cell states. Three of six vaccinated patients experience disease recurrence during the follow-up period of 2 years. Collectively, these data support the feasibility, safety, and immunogenicity of this treatment in resected NSCLC.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Carcinoma Pulmonar de Células não Pequenas , Diferenciação Celular , Células Dendríticas , Neoplasias Pulmonares , Linfócitos T , Vacinação , Humanos , Células Dendríticas/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Vacinas Anticâncer/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Antígenos de Neoplasias/imunologia , Diferenciação Celular/imunologia , Idoso , Linfócitos T/imunologia
2.
Am J Hum Genet ; 111(3): 509-528, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38412861

RESUMO

Neurodevelopmental disorders (NDDs) result from impaired development and functioning of the brain. Here, we identify loss-of-function (LoF) variation in ZFHX3 as a cause for syndromic intellectual disability (ID). ZFHX3 is a zinc-finger homeodomain transcription factor involved in various biological processes, including cell differentiation and tumorigenesis. We describe 42 individuals with protein-truncating variants (PTVs) or (partial) deletions of ZFHX3, exhibiting variable intellectual disability and autism spectrum disorder, recurrent facial features, relative short stature, brachydactyly, and, rarely, cleft palate. ZFHX3 LoF associates with a specific methylation profile in whole blood extracted DNA. Nuclear abundance of ZFHX3 increases during human brain development and neuronal differentiation. ZFHX3 was found to interact with the chromatin remodeling BRG1/Brm-associated factor complex and the cleavage and polyadenylation complex, suggesting a function in chromatin remodeling and mRNA processing. Furthermore, ChIP-seq for ZFHX3 revealed that it predominantly binds promoters of genes involved in nervous system development. We conclude that loss-of-function variants in ZFHX3 are a cause of syndromic ID associating with a specific DNA methylation profile.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Encéfalo/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
3.
medRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292950

RESUMO

Neurodevelopmental disorders (NDDs) result from impaired development and functioning of the brain. Here, we identify loss-of-function variation in ZFHX3 as a novel cause for syndromic intellectual disability (ID). ZFHX3, previously known as ATBF1, is a zinc-finger homeodomain transcription factor involved in multiple biological processes including cell differentiation and tumorigenesis. Through international collaboration, we collected clinical and morphometric data (Face2Gene) of 41 individuals with protein truncating variants (PTVs) or (partial) deletions of ZFHX3 . We used data mining, RNA and protein analysis to identify the subcellular localization and spatiotemporal expression of ZFHX3 in multiple in vitro models. We identified the DNA targets of ZFHX3 using ChIP seq. Immunoprecipitation followed by mass spectrometry indicated potential binding partners of endogenous ZFHX3 in neural stem cells that were subsequently confirmed by reversed co-immunoprecipitation and western blot. We evaluated a DNA methylation profile associated with ZFHX3 haploinsufficiency using DNA methylation analysis on whole blood extracted DNA of six individuals with ZFHX3 PTVs and four with a (partial) deletion of ZFHX3 . A reversed genetic approach characterized the ZFHX3 orthologue in Drosophila melanogaster . Loss-of-function variation of ZFHX3 consistently associates with (mild) ID and/or behavioural problems, postnatal growth retardation, feeding difficulties, and recognizable facial characteristics, including the rare occurrence of cleft palate. Nuclear abundance of ZFHX3 increases during human brain development and neuronal differentiation in neural stem cells and SH-SY5Y cells, ZFHX3 interacts with the chromatin remodelling BRG1/Brm-associated factor complex and the cleavage and polyadenylation complex. In line with a role for chromatin remodelling, ZFHX3 haploinsufficiency associates with a specific DNA methylation profile in leukocyte-derived DNA. The target genes of ZFHX3 are implicated in neuron and axon development. In Drosophila melanogaster , z fh2, considered to be the ZFHX3 orthologue, is expressed in the third instar larval brain. Ubiquitous and neuron-specific knockdown of zfh2 results in adult lethality underscoring a key role for zfh2 in development and neurodevelopment. Interestingly, ectopic expression of zfh2 as well as ZFHX3 in the developing wing disc results in a thoracic cleft phenotype. Collectively, our data shows that loss-of-function variants in ZFHX3 are a cause of syndromic ID, that associates with a specific DNA methylation profile. Furthermore, we show that ZFHX3 participates in chromatin remodelling and mRNA processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA