Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 42(2): e110833, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36354735

RESUMO

The AKT-mTOR pathway is a central regulator of cell growth and metabolism. Upon sustained mTOR activity, AKT activity is attenuated by a feedback loop that restrains upstream signaling. However, how cells control the signals that limit AKT activity is not fully understood. Here, we show that MASTL/Greatwall, a cell cycle kinase that supports mitosis by phosphorylating the PP2A/B55 inhibitors ENSA/ARPP19, inhibits PI3K-AKT activity by sustaining mTORC1- and S6K1-dependent phosphorylation of IRS1 and GRB10. Genetic depletion of MASTL results in an inefficient feedback loop and AKT hyperactivity. These defects are rescued by the expression of phosphomimetic ENSA/ARPP19 or inhibition of PP2A/B55 phosphatases. MASTL is directly phosphorylated by mTORC1, thereby limiting the PP2A/B55-dependent dephosphorylation of IRS1 and GRB10 downstream of mTORC1. Downregulation of MASTL results in increased glucose uptake in vitro and increased glucose tolerance in adult mice, suggesting the relevance of the MASTL-PP2A/B55 kinase-phosphatase module in controlling AKT and maintaining metabolic homeostasis.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Proteína Fosfatase 2 , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Ciclo Celular/genética , Glucose/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitose , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
Cells ; 9(6)2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531951

RESUMO

In the past few years, cell plasticity has emerged as a mode of targeted therapy evasion in prostate adenocarcinoma. When exposed to anticancer therapies, tumor cells may switch into a different histological subtype, such as the neuroendocrine phenotype which is associated with treatment failure and a poor prognosis. In this study, we demonstrated that long-term androgen signal depletion of prostate LNCaP cells induced a neuroendocrine phenotype followed by re-differentiation towards a "stem-like" state. LNCaP cells incubated for 30 days in charcoal-stripped medium or with the androgen receptor antagonist 2-hydroxyflutamide developed neuroendocrine morphology and increased the expression of the neuroendocrine markers ßIII-tubulin and neuron specific enolase (NSE). When cells were incubated for 90 days in androgen-depleted medium, they grew as floating spheres and had enhanced expression of the stem cell markers CD133, ALDH1A1, and the transporter ABCB1A. Additionally, the pluripotent transcription factors Nanog and Oct4 and the angiogenic factor VEGF were up-regulated while the expression of E-cadherin was inhibited. Cell viability revealed that those cells were resistant to docetaxel and 2-hidroxyflutamide. Mechanistically, androgen depletion induced the decrease in AMP-activated kinase (AMPK) expression and activation and stabilization of the hypoxia-inducible factor HIF-1α. Overexpression of AMPK in the stem-like cells decreased the expression of stem markers as well as that of HIF-1α and VEGF while it restored the levels of E-cadherin and PGC-1α. Most importantly, docetaxel sensitivity was restored in stem-like AMPK-transfected cells. Our model provides a new regulatory mechanism of prostate cancer plasticity through AMPK that is worth exploring.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Células-Tronco/efeitos dos fármacos , Antagonistas de Androgênios/farmacologia , Linhagem Celular Tumoral , Humanos , Masculino , Transfecção
3.
Open Biol ; 9(7): 190099, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31288625

RESUMO

The AMP-activated protein kinase (AMPK) acts as a cellular energy sensor. Once switched on by increases in cellular AMP : ATP ratios, it acts to restore energy homeostasis by switching on catabolic pathways while switching off cell growth and proliferation. The canonical AMP-dependent mechanism of activation requires the upstream kinase LKB1, which was identified genetically to be a tumour suppressor. AMPK can also be switched on by increases in intracellular Ca2+, by glucose starvation and by DNA damage via non-canonical, AMP-independent pathways. Genetic studies of the role of AMPK in mouse cancer suggest that, before disease arises, AMPK acts as a tumour suppressor that protects against cancer, with this protection being further enhanced by AMPK activators such as the biguanide phenformin. However, once cancer has occurred, AMPK switches to being a tumour promoter instead, enhancing cancer cell survival by protecting against metabolic, oxidative and genotoxic stresses. Studies of genetic changes in human cancer also suggest diverging roles for genes encoding subunit isoforms, with some being frequently amplified, while others are mutated.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Neoplasias/patologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Animais , Metabolismo Energético/genética , Genes Supressores de Tumor/fisiologia , Glucose/metabolismo , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
4.
Mol Oncol ; 13(5): 1311-1331, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959553

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. HCC treatment is hindered by the frequent emergence of chemoresistance to the multikinase inhibitor sorafenib, which has been related to the presence of cancer stem cells (CSCs) that self-renew and often escape therapy. The key metabolic sensor AMP-activated kinase (AMPK) has recently been recognized as a tumour growth regulator. In this study, we aimed to elucidate the role of AMPK in the development of a stem cell phenotype in HCC cells. To this end, we enriched the CSC population in HCC cell lines that showed increased expression of drug resistance (ALDH1A1, ABCB1A) and stem cell (CD133, Nanog, Oct4, alpha fetoprotein) markers and demonstrated their stemness phenotype. These cells were refractory to sorafenib-induced cell death. We report that sorafenib-resistant cells had lower levels of total and phosphorylated AMPK as well as its downstream substrate, ACC, compared with the parental cells. Interestingly, AMPK knockdown with siRNA or inhibition with dorsomorphin increased the expression of stem cell markers in parental cells and blocked sorafenib-induced cell death. Conversely, the upregulation of AMPK, either by transfection or by pharmacological activation with A-769662, decreased the expression of ALDH1A1, ABCB1A, CD133, Nanog, Oct4, and alpha fetoprotein, and restored sensitivity to sorafenib. Analysis of the underlying mechanism points to hypoxia-inducible factor HIF-1α as a regulator of stemness. In vivo studies in a xenograft mouse model demonstrated that stem-like cells have greater tumourigenic capacity. AMPK activation reduced xenograft tumour growth and decreased the expression of stem cell markers. Taken together, these results indicate that AMPK may serve as a novel target to overcome chemoresistance in HCC.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Biomarcadores Tumorais , Carcinoma Hepatocelular , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Hepáticas , Proteínas de Neoplasias , Células-Tronco Neoplásicas , Pironas/farmacologia , Sorafenibe/farmacologia , Tiofenos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Compostos de Bifenilo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cell Rep ; 27(3): 690-698.e4, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995468

RESUMO

AMPK acts downstream of the tumor suppressor LKB1, yet its role in cancer has been controversial. AMPK is activated by biguanides, such as metformin and phenformin, and metformin use in diabetics has been associated with reduced cancer risk. However, whether this is mediated by cell-autonomous AMPK activation within tumor progenitor cells has been unclear. We report that T-cell-specific loss of AMPK-α1 caused accelerated growth of T cell acute lymphoblastic leukemia/lymphoma (T-ALL) induced by PTEN loss in thymic T cell progenitors. Oral administration of phenformin, but not metformin, delayed onset and growth of lymphomas, but only when T cells expressed AMPK-α1. This differential effect of biguanides correlated with detection of phenformin, but not metformin, in thymus. Phenformin also enhanced apoptosis in T-ALL cells both in vivo and in vitro. Thus, AMPK-α1 can be a cell-autonomous tumor suppressor in the context of T-ALL, and phenformin may have potential for the prevention of some cancers.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proliferação de Células/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Fenformin/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/deficiência , Proteínas Quinases Ativadas por AMP/genética , Administração Oral , Animais , Modelos Animais de Doenças , Intervalo Livre de Doença , Feminino , Glicólise/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Fenformin/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/mortalidade , Sirolimo/farmacologia
6.
Mol Cancer Res ; 16(2): 345-357, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29133590

RESUMO

Many genotoxic cancer treatments activate AMP-activated protein kinase (AMPK), but the mechanisms of AMPK activation in response to DNA damage, and its downstream consequences, have been unclear. In this study, etoposide activates the α1 but not the α2 isoform of AMPK, primarily within the nucleus. AMPK activation is independent of ataxia-telangiectasia mutated (ATM), a DNA damage-activated kinase, and the principal upstream kinase for AMPK, LKB1, but correlates with increased nuclear Ca2+ and requires the Ca2+/calmodulin-dependent kinase, CaMKK2. Intriguingly, Ca2+-dependent activation of AMPK in two different LKB1-null cancer cell lines caused G1-phase cell-cycle arrest, and enhanced cell viability/survival after etoposide treatment, with both effects being abolished by knockout of AMPK-α1 and α2. The CDK4/6 inhibitor palbociclib also caused G1 arrest in G361 but not HeLa cells and, consistent with this, enhanced cell survival after etoposide treatment only in G361 cells. These results suggest that AMPK activation protects cells against etoposide by limiting entry into S-phase, where cells would be more vulnerable to genotoxic stress.Implications: These results reveal that the α1 isoform of AMPK promotes tumorigenesis by protecting cells against genotoxic stress, which may explain findings that the gene encoding AMPK-α1 (but not -α2) is amplified in some human cancers. Furthermore, α1-selective inhibitors might enhance the anticancer effects of genotoxic-based therapies. Mol Cancer Res; 16(2); 345-57. ©2017 AACR.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Núcleo Celular/metabolismo , Dano ao DNA , Etoposídeo/farmacologia , Neoplasias/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Cálcio/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/genética , Sobrevivência Celular , Reparo do DNA/efeitos dos fármacos , Técnicas de Inativação de Genes , Células HeLa , Humanos , Neoplasias/genética , Transdução de Sinais/efeitos dos fármacos
7.
PLoS One ; 11(9): e0162977, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27627761

RESUMO

Neuroendocrine (NE) prostate cancer (PCa) is a highly aggressive subtype of prostate cancer associated with resistance to androgen ablation therapy. In this study, we used LNCaP prostate cancer cells cultured in a serum-free medium for 6 days as a NE model of prostate cancer. Serum deprivation increased the expression of NE markers such as neuron-specific enolase (NSE) and ßIII tubulin (ßIII tub) and decreased the expression of the androgen receptor protein in LNCaP cells. Using cDNA microarrays, we compared gene expression profiles of NE cells and non-differentiated LNCaP cells. We identified up-regulation of 155 genes, among them LAMP2, a lysosomal membrane protein involved in lysosomal stability and autophagy. We then confirmed up-regulation of LAMP2 in NE cells by qRT-PCR, Western blot and confocal microscopy assays, showing that mRNA up-regulation correlated with increased levels of LAMP2 protein. Subsequently, we determined autophagy activity in NE cells by assessing the protein levels of SQSTM/p62 and LC3 by Western blot and LC3 and Atg5 mRNAs content by qRT-PCR. The decreased levels of SQSTM/p62 was accompanied by an enhanced expression of LC3 and ATG5, suggesting activation of autophagy in NE cells. Blockage of autophagy with 1µM AKT inhibitor IV, or by silencing Beclin 1 and Atg5, prevented NE cell differentiation, as revealed by decreased levels of the NE markers. In addition, AKT inhibitor IV as well as Beclin1 and Atg5 kwockdown attenuated LAMP2 expression in NE cells. On the other hand, LAMP2 knockdown by siRNA led to a marked blockage of autophagy, prevention of NE differentiation and decrease of cell survival. Taken together, these results suggest that LAMP2 overexpression assists NE differentiation of LNCaP cells induced by serum deprivation and facilitates autophagy activity in order to attain the NE phenotype and cell survival. LAMP2 could thus be a potential biomarker and potential target for NE prostate cancer.


Assuntos
Autofagia/fisiologia , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Neoplasias da Próstata/metabolismo , Western Blotting , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/fisiologia , Masculino , Microscopia Confocal , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias da Próstata/fisiopatologia , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma , Regulação para Cima
8.
Mol Cancer Res ; 14(8): 683-95, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27141100

RESUMO

UNLABELLED: The AMP-activated protein kinase (AMPK) is activated by phosphorylation at Thr172, either by the tumor suppressor kinase LKB1 or by an alternate pathway involving the Ca(2+)/calmodulin-dependent kinase, CAMKK2. Increases in AMP:ATP and ADP:ATP ratios, signifying energy deficit, promote allosteric activation and net Thr172 phosphorylation mediated by LKB1, so that the LKB1-AMPK pathway acts as an energy sensor. Many tumor cells carry loss-of-function mutations in the STK11 gene encoding LKB1, but LKB1 reexpression in these cells causes cell-cycle arrest. Therefore, it was investigated as to whether arrest by LKB1 is caused by activation of AMPK or of one of the AMPK-related kinases, which are also dependent on LKB1 but are not activated by CAMKK2. In three LKB1-null tumor cell lines, treatment with the Ca(2+) ionophore A23187 caused a G1 arrest that correlated with AMPK activation and Thr172 phosphorylation. In G361 cells, expression of a truncated, Ca(2+)/calmodulin-independent CAMKK2 mutant also caused G1 arrest similar to that caused by expression of LKB1, while expression of a dominant-negative AMPK mutant, or a double knockout of both AMPK-α subunits, also prevented the cell-cycle arrest caused by A23187. These mechanistic findings confirm that AMPK activation triggers cell-cycle arrest, and also suggest that the rapid proliferation of LKB1-null tumor cells is due to lack of the restraining influence of AMPK. However, cell-cycle arrest can be restored by reexpressing LKB1 or a constitutively active CAMKK2, or by pharmacologic agents that increase intracellular Ca(2+) and thus activate endogenous CAMKK2. IMPLICATIONS: Evidence here reveals that the rapid growth and proliferation of cancer cells lacking the tumor suppressor LKB1 is due to reduced activity of AMPK, and suggests a therapeutic approach by which this block might be circumvented. Mol Cancer Res; 14(8); 683-95. ©2016 AACR.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Humanos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA