RESUMO
Large-scale genetic studies have identified numerous genetic risk factors that suggest a central role for innate immune cells in susceptibility to Alzheimer's disease (AD). CD33, an immunomodulatory transmembrane sialic acid binding protein expressed on myeloid cells, was identified as one such genetic risk factor associated with Alzheimer's disease. Several studies explored the molecular outcomes of genetic variation at the CD33 locus. It has been determined that the risk variant associated with AD increases the expression of the large isoform of CD33 (CD33M) in innate immune cells and alters its biological functions. CD33 is thought to signal via the interaction of its ITIM motif and the protein tyrosine phosphatase, SHP-1. Here, we utilize different molecular and computational approaches to investigate how AD-associated genetic variation in CD33 affects its interaction with SHP-1 in human microglia and microglia-like cells. Our findings demonstrate a genotype-dependent interaction between CD33 and SHP-1, which may functionally contribute to the AD risk associated with this CD33 variant. We also found that CD33-PTPN6 (SHP-1) gene-gene interactions impact AD-related traits, while CD33-PTPN11 (SHP-2) interactions do not.
Assuntos
Doença de Alzheimer , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Microglia/metabolismo , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo ÚnicoRESUMO
To uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer's disease, we performed single nucleus RNA sequencing in 24 Alzheimer's disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3, upregulated in Alzheimer's disease pericytes, has the highest number of ligands including VEGFA, downregulated in Alzheimer's disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer's disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer's disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3-astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer's disease.
Assuntos
Doença de Alzheimer , Astrócitos , Barreira Hematoencefálica , Pericitos , Proteína Smad3 , Fator A de Crescimento do Endotélio Vascular , Peixe-Zebra , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Proteína Smad3/metabolismo , Proteína Smad3/genética , Astrócitos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Pericitos/metabolismo , Pericitos/patologia , Masculino , Células-Tronco Pluripotentes Induzidas/metabolismo , Feminino , Idoso , Transcriptoma , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/irrigação sanguínea , Idoso de 80 Anos ou mais , Modelos Animais de DoençasRESUMO
The exchange of genes between cells is known to play an important physiological and pathological role in many organisms. We show that circulating tumor DNA (ctDNA) facilitates cell-specific gene transfer between human cancer cells and explain part of the mechanisms behind this phenomenon. As ctDNA migrates into the nucleus, genetic information is transferred. Cell targeting and ctDNA integration require ERVL, SINE or LINE DNA sequences. Chemically manufactured AluSp and MER11C sequences replicated multiple myeloma (MM) ctDNA cell targeting and integration. Additionally, we found that ctDNA may alter the treatment response of MM and pancreatic cancer models. This study shows that retrotransposon DNA sequences promote cancer gene transfer. However, because cell-free DNA has been detected in physiological and other pathological conditions, our findings have a broader impact than just cancer. Furthermore, the discovery that transposon DNA sequences mediate tissue-specific targeting will open up a new avenue for the delivery of genes and therapies.
Assuntos
DNA Tumoral Circulante , Elementos de DNA Transponíveis , Humanos , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Elementos de DNA Transponíveis/genética , Linhagem Celular Tumoral , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Animais , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Camundongos , Especificidade de Órgãos/genética , Retroelementos/genética , Técnicas de Transferência de GenesRESUMO
BACKGROUND: Long-term exposure to air pollution has been associated with changes in levels of metabolites measured in the peripheral blood. However, most research has been conducted in ethnically homogenous, young or middle-aged populations. OBJECTIVE: To study the relationship between the plasma metabolome and long-term exposure to three air pollutants: particulate matter (PM) less than 2.5µm in aerodynamic diameter (PM2.5), PM less than 10µm in aerodynamic diameter (PM10), and nitrogen dioxide (NO2) in an ethnically diverse, older population. METHODS: Plasma metabolomic profiles of 107 participants of the Washington Heights and Inwood Community Aging Project in New York City, collected from 1995-2015, including non-Hispanic white, Caribbean Hispanic, and non-Hispanic Black older adults were used. We estimated the association between each metabolic feature and predicted annual mean exposure to the air pollutants using three approaches: 1) A metabolome wide association study framework; 2) Feature selection using elastic net regression; and 3) A multivariate approach using partial-least squares discriminant analysis. RESULTS: 79 features associated with exposure to PM2.5 but none associated with PM10 or NO2. PM2.5 exposure was associated with altered amino acid metabolism, energy production, and oxidative stress response, pathways also associated with Alzheimer's disease. Three metabolites were associated with PM2.5 exposure through all three approaches: cysteinylglycine disulfide, a diglyceride, and a dicarboxylic acid. The relationship between several features and PM2.5 exposure was modified by diet and metabolic diseases. CONCLUSIONS: These relationships uncover the mechanisms through which PM2.5 exposure can lead to altered metabolic outcomes in an older population.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Demência , Idoso , Humanos , Envelhecimento , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Dióxido de Nitrogênio/análise , Material Particulado/efeitos adversos , Material Particulado/análiseRESUMO
Alzheimer's disease (AD) has been associated with cardiovascular and cerebrovascular risk factors (CVRFs) during middle age and later and is frequently accompanied by cerebrovascular pathology at death. An interaction between CVRFs and genetic variants might explain the pathogenesis. Genome-wide, gene by CVRF interaction analyses for AD, in 6568 patients and 8101 controls identified FMNL2 (p = 6.6 × 10-7). A significant increase in FMNL2 expression was observed in the brains of patients with brain infarcts and AD pathology and was associated with amyloid and phosphorylated tau deposition. FMNL2 was also prominent in astroglia in AD among those with cerebrovascular pathology. Amyloid toxicity in zebrafish increased fmnl2a expression in astroglia with detachment of astroglial end feet from blood vessels. Knockdown of fmnl2a prevented gliovascular remodeling, reduced microglial activity and enhanced amyloidosis. APP/PS1dE9 AD mice also displayed increased Fmnl2 expression and reduced the gliovascular contacts independent of the gliotic response. Based on this work, we propose that FMNL2 regulates pathology-dependent plasticity of the blood-brain-barrier by controlling gliovascular interactions and stimulating the clearance of extracellular aggregates. Therefore, in AD cerebrovascular risk factors promote cerebrovascular pathology which in turn, interacts with FMNL2 altering the normal astroglial-vascular mechanisms underlying the clearance of amyloid and tau increasing their deposition in brain.
Assuntos
Doença de Alzheimer , Amiloidose , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/complicações , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Forminas , Humanos , Camundongos , Camundongos Transgênicos , Fatores de Risco , Peixe-Zebra/metabolismoRESUMO
Late-onset Alzheimer's disease (LOAD) is significantly more frequent in Hispanics than in non-Hispanic Whites. Ancestry may explain these differences across ethnic groups. To this end, we studied a large cohort of Caribbean Hispanics (CH, N = 8813) and tested the association between Local Ancestry (LA) and LOAD ("admixture mapping") to identify LOAD-associated ancestral blocks, separately for ancestral components (European [EUR], African [AFR], Native American[NA]) and jointly (AFR + NA). Ancestral blocks significant after permutation were fine-mapped employing multi-ethnic whole-exome sequencing (WES) to identify rare variants associated with LOAD (SKAT-O) and replicated in the UK Biobank WES dataset. Candidate genes were validated studying (A) protein expression in human LOAD and control brains; (B) two animal AD models, Drosophila and Zebrafish. In the joint AFR + NA model, we identified four significant ancestral blocks located on chromosomes 1 (p value = 8.94E-05), 6 (p value = 8.63E-05), 21 (p value = 4.64E-05) and 22 (p value = 1.77E-05). Fine-mapping prioritized the GCAT gene on chromosome 22 (SKAT-O p value = 3.45E-05) and replicated in the UK Biobank (SKAT-O p value = 0.05). In LOAD brains, a decrease of 28% in GCAT protein expression was observed (p value = 0.038), and GCAT knockdown in Amyloid-ß42 Drosophila exacerbated rough eye phenotype (68% increase, p value = 4.84E-09). In zebrafish, gcat expression increased after acute amyloidosis (34%, p value = 0.0049), and decreased upon anti-inflammatory Interleukin-4 (39%, p value = 2.3E-05). Admixture mapping uncovered genomic regions harboring new LOAD-associated loci that might explain the observed different frequency of LOAD across ethnic groups. Our results suggest that the inflammation-related activity of GCAT is a response to amyloid toxicity, and reduced GCAT expression exacerbates AD pathology.
Assuntos
Doença de Alzheimer , Etnicidade , Doença de Alzheimer/genética , Animais , Região do Caribe , Drosophila , Humanos , Polimorfismo de Nucleotídeo Único/genética , Peixe-ZebraRESUMO
Congenital diaphragmatic hernia (CDH) is a severe congenital anomaly that is often accompanied by other anomalies. Although the role of genetics in the pathogenesis of CDH has been established, only a small number of disease-associated genes have been identified. To further investigate the genetics of CDH, we analyzed de novo coding variants in 827 proband-parent trios and confirmed an overall significant enrichment of damaging de novo variants, especially in constrained genes. We identified LONP1 (lon peptidase 1, mitochondrial) and ALYREF (Aly/REF export factor) as candidate CDH-associated genes on the basis of de novo variants at a false discovery rate below 0.05. We also performed ultra-rare variant association analyses in 748 affected individuals and 11,220 ancestry-matched population control individuals and identified LONP1 as a risk gene contributing to CDH through both de novo and ultra-rare inherited largely heterozygous variants clustered in the core of the domains and segregating with CDH in affected familial individuals. Approximately 3% of our CDH cohort who are heterozygous with ultra-rare predicted damaging variants in LONP1 have a range of clinical phenotypes, including other anomalies in some individuals and higher mortality and requirement for extracorporeal membrane oxygenation. Mice with lung epithelium-specific deletion of Lonp1 die immediately after birth, most likely because of the observed severe reduction of lung growth, a known contributor to the high mortality in humans. Our findings of both de novo and inherited rare variants in the same gene may have implications in the design and analysis for other genetic studies of congenital anomalies.
Assuntos
Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/fisiologia , Anormalidades Craniofaciais/genética , Variações do Número de Cópias de DNA , Anormalidades do Olho/genética , Transtornos do Crescimento/genética , Hérnias Diafragmáticas Congênitas/genética , Luxação Congênita de Quadril/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Mutação de Sentido Incorreto , Osteocondrodisplasias/genética , Anormalidades Dentárias/genética , Animais , Estudos de Casos e Controles , Estudos de Coortes , Anormalidades Craniofaciais/patologia , Anormalidades do Olho/patologia , Feminino , Transtornos do Crescimento/patologia , Hérnias Diafragmáticas Congênitas/patologia , Luxação Congênita de Quadril/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteocondrodisplasias/patologia , Linhagem , Anormalidades Dentárias/patologiaRESUMO
Importance: Genetic studies of Alzheimer disease have focused on the clinical or pathologic diagnosis as the primary outcome, but little is known about the genetic basis of the preclinical phase of the disease. Objective: To examine the underlying genetic basis for brain amyloidosis in the preclinical phase of Alzheimer disease. Design, Setting, and Participants: In the first stage of this genetic association study, a meta-analysis was conducted using genetic and imaging data acquired from 6 multicenter cohort studies of healthy older individuals between 1994 and 2019: the Anti-Amyloid Treatment in Asymptomatic Alzheimer Disease Study, the Berkeley Aging Cohort Study, the Wisconsin Registry for Alzheimer's Prevention, the Biomarkers of Cognitive Decline Among Normal Individuals cohort, the Baltimore Longitudinal Study of Aging, and the Alzheimer Disease Neuroimaging Initiative, which included Alzheimer disease and mild cognitive impairment. The second stage was designed to validate genetic observations using pathologic and clinical data from the Religious Orders Study and Rush Memory and Aging Project. Participants older than 50 years with amyloid positron emission tomographic (PET) imaging data and DNA from the 6 cohorts were included. The largest cohort, the Anti-Amyloid Treatment in Asymptomatic Alzheimer Disease Study (n = 3154), was the PET screening cohort used for a secondary prevention trial designed to slow cognitive decline associated with brain amyloidosis. Six smaller, longitudinal cohort studies (n = 1160) provided additional amyloid PET imaging data with existing genetic data. The present study was conducted from March 29, 2019, to February 19, 2020. Main Outcomes and Measures: A genome-wide association study of PET imaging amyloid levels. Results: From the 4314 analyzed participants (age, 52-96 years; 2478 participants [57%] were women), a novel locus for amyloidosis was noted within RBFOX1 (ß = 0.61, P = 3 × 10-9) in addition to APOE. The RBFOX1 protein localized around plaques, and reduced expression of RBFOX1 was correlated with higher amyloid-ß burden (ß = -0.008, P = .002) and worse cognition (ß = 0.007, P = .006) during life in the Religious Orders Study and Rush Memory and Aging Project cohort. Conclusions and Relevance: RBFOX1 encodes a neuronal RNA-binding protein known to be expressed in neuronal tissues and may play a role in neuronal development. The findings of this study suggest that RBFOX1 is a novel locus that may be involved in the pathogenesis of Alzheimer disease.
Assuntos
Doença de Alzheimer/genética , Amiloidose/genética , Encéfalo , Estudos de Associação Genética/métodos , Variação Genética/genética , Fatores de Processamento de RNA/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Amiloidose/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Estudos de Coortes , Diagnóstico Precoce , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sintomas ProdrômicosRESUMO
Common variants of about 20 genes contributing to AD risk have so far been identified through genome-wide association studies (GWAS). However, there is still a large proportion of heritability that might be explained by rare but functionally important variants. One of the so far identified genes with rare AD causing variants is ADAM10. Using whole-genome sequencing we now identified a single rare nonsynonymous variant (SNV) rs142946965 [p.R215I] in ADAM17 co-segregating with an autosomal-dominant pattern of late-onset AD in one family. Subsequent genotyping and analysis of available whole-exome sequencing data of additional case/control samples from Germany, UK, and USA identified five variant carriers among AD patients only. The mutation inhibits pro-protein cleavage and the formation of the active enzyme, thus leading to loss-of-function of ADAM17 alpha-secretase. Further, we identified a strong negative correlation between ADAM17 and APP gene expression in human brain and present in vitro evidence that ADAM17 negatively controls the expression of APP. As a consequence, p.R215I mutation of ADAM17 leads to elevated Aß formation in vitro. Together our data supports a causative association of the identified ADAM17 variant in the pathogenesis of AD.
Assuntos
Proteína ADAM17/genética , Doença de Alzheimer/genética , Proteína ADAM17/metabolismo , Idoso , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Alemanha , Humanos , Mutação com Perda de Função/genética , Masculino , Pessoa de Meia-Idade , Mutação , Sequenciamento do ExomaRESUMO
In the blood, mosaic somatic aneuploidy (mSA) of all chromosomes has been found to be associated with adverse health outcomes, including hematological cancer. Sex chromosome mSA in the blood has been found to occur at a higher rate than autosomal mSA. Mosaic loss of the Y chromosome is the most common copy number alteration in males, and has been found to be associated with Alzheimer's disease (AD) in blood lymphocytes. mSA of the sex chromosomes has also been identified in the brain; however, little is known about its frequency across individuals. Using WGS data from 362 males and 719 females from the ROSMAP cohort, we quantified the relative rate of sex chromosome mSA in the dorsolateral prefrontal cortex (DLPFC), cerebellum and whole blood. To ascertain the functionality of observed sex chromosome mosaicism in the DLPFC, we examined its correlation with chromosome X and Y gene expression as well as neuropathological and clinical characteristics of AD and cognitive ageing. In males, we found that mSA of the Y chromosome occurs more frequently in blood than in the DLPFC or cerebellum. In the DLPFC, the presence of at least one APOE4 allele was associated with a reduction in read depth of the Y chromosome (pâ¯=â¯1.9e-02). In the female DLPFC, a reduction in chromosome X read depth was associated with reduced cognition at the last clinical visit and faster rate of cognitive decline (pâ¯=â¯7.8e-03; pâ¯=â¯1.9e-02). mSA of all sex chromosomes in the DLPFC were associated with aggregate measures of gene expression, implying functional impact. Our results provide insight into the relative rate of mSA between tissues and suggest that Y and female X chromosome read depth in the DLPFC is modestly associated with late AD risk factors and cognitive pathologies.
Assuntos
Mosaicismo/classificação , Córtex Pré-Frontal/citologia , Cromossomos Sexuais/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Aneuploidia , Encéfalo/citologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/genética , Córtex Pré-Frontal/fisiologia , Caracteres Sexuais , Sequenciamento Completo do Genoma/métodosRESUMO
Importance: Some of the unexplained heritability of Alzheimer disease (AD) may be due to rare variants whose effects are not captured in genome-wide association studies because very large samples are needed to observe statistically significant associations. Objective: To identify genetic variants associated with AD risk using a nonstatistical approach. Design, Setting, and Participants: Genetic association study in which rare variants were identified by whole-exome sequencing in unrelated individuals of European ancestry from the Alzheimer's Disease Sequencing Project (ADSP). Data were analyzed between March 2017 and September 2018. Main Outcomes and Measures: Minor alleles genome-wide and in 95 genes previously associated with AD, AD-related traits, or other dementias were tabulated and filtered for predicted functional impact and occurrence in participants with AD but not controls. Support for several findings was sought in a whole-exome sequencing data set comprising 19 affected relative pairs from Utah high-risk pedigrees and whole-genome sequencing data sets from the ADSP and Alzheimer's Disease Neuroimaging Initiative. Results: Among 5617 participants with AD (3202 [57.0%] women; mean [SD] age, 76.4 [9.3] years) and 4594 controls (2719 [59.0%] women; mean [SD] age, 86.5 [4.5] years), a total of 24 variants with moderate or high functional impact from 19 genes were observed in 10 or more participants with AD but not in controls. These variants included a missense mutation (rs149307620 [p.A284T], n = 10) in NOTCH3, a gene in which coding mutations are associated with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), that was also identified in 1 participant with AD and 1 participant with mild cognitive impairment in the whole genome sequencing data sets. Four participants with AD carried the TREM2 rs104894002 (p.Q33X) high-impact mutation that, in homozygous form, causes Nasu-Hakola disease, a rare disorder characterized by early-onset dementia and multifocal bone cysts, suggesting an intermediate inheritance model for the mutation. Compared with controls, participants with AD had a significantly higher burden of deleterious rare coding variants in dementia-associated genes (2314 vs 3354 cumulative variants, respectively; P = .006). Conclusions and Relevance: Different mutations in the same gene or variable dose of a mutation may be associated with result in distinct dementias. These findings suggest that minor differences in the structure or amount of protein may be associated with in different clinical outcomes. Understanding these genotype-phenotype associations may provide further insight into the pathogenic nature of the mutations, as well as offer clues for developing new therapeutic targets.
Assuntos
Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , Mutação/genética , População Branca/genética , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Glicoproteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único/genética , Receptor Notch3/genética , Receptores Imunológicos/genéticaRESUMO
INTRODUCTION: Murine studies have shown that apolipoprotein E modulates pulmonary function during development, aging, and allergen-induced airway disease. It is not known whether the polymorphic human APOE gene influences pulmonary function. OBJECTIVES: We assessed whether an association exists between the polymorphic human APOE ε2, ε3, and ε4 alleles and pulmonary function among participants in the Long Life Family Study. METHODS: Data from 4,468 Caucasian subjects who had genotyping performed for the APOE ε2, ε3, and ε4 alleles were analyzed, with and without stratification by sex. Statistical models were fitted considering the effects of the ε2 allele, defined as ε2/2 or ε2/3 genotypes, and the ε4 allele, defined as ε3/4 or ε4/4 genotypes, which were compared to the ε3/3 genotype. RESULTS: The mean FEV1/FVC ratio (the forced expiratory volume in one second divided by the forced vital capacity) was lower among women with the ε4 allele as compared to women with the ε3/3 genotype or the ε2 allele. Carriage of the APOE ε4 allele was associated with FEV1/FVC, which implied lower values. Further analysis showed that the association primarily reflected women without lung disease who were older than 70 years. The association was not mediated by lipid levels, smoking status, body mass index, or cardiovascular disease. CONCLUSIONS: This study for the first time identifies that the APOE gene is associated with modified lung physiology in women. This suggests that a link may exist between the APOE ε4 allele, female sex, and a reduction in the FEV1/FVC ratio in older individuals.
Assuntos
Alelos , Apolipoproteínas E/genética , Pulmão/fisiologia , Respiração/genética , População Branca/genética , Fatores Etários , Idoso , Estudos Transversais , Feminino , Volume Expiratório Forçado/genética , Genótipo , Humanos , Masculino , Isoformas de Proteínas/genética , Fatores Sexuais , Capacidade Vital/genéticaRESUMO
Several lines of inquiry point to overlapping molecular mechanisms between late-onset Alzheimer disease (AD) and age-related macular degeneration (AMD). We evaluated summarized results from large genome-wide association studies for AD and AMD to test the hypothesis that AD susceptibility loci are also associated with AMD. We observed association of both disorders with genes in a region of chromosome 7, including PILRA and ZCWPW1 (peak AMD SNP rs7792525, minor allele frequency [MAF] = 19%, odds ratio [OR] = 1.14, p = 2.34 × 10(-6)), and with ABCA7 (peak AMD SNP rs3752228, MAF = 0.054, OR = 1.22, p = 0.00012). Next, we evaluated association of AMD with genes in AD-related pathways identified by canonical pathway analysis of AD-associated genes. Significant associations were observed with multiple previously identified AMD risk loci and 2 novel genes: HGS (peak SNP rs8070488, MAF = 0.23, OR = 0.91, p = 7.52 × 10(-5)), which plays a role in the clathrin-mediated endocytosis signaling pathway, and TNF (peak SNP rs2071590, MAF = 0.34, OR = 0.89, p = 1.17 × 10(-5)), which is a member of the atherosclerosis signaling and the LXR/RXR activation pathways. Our results suggest that AMD and AD share genetic mechanisms.
Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , Degeneração Macular/genética , Transportadores de Cassetes de Ligação de ATP/genética , Cromossomos Humanos Par 7/genética , Clatrina , Endocitose/genética , Endocitose/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Humanos , Glicoproteínas de Membrana/genética , Fosfoproteínas/genética , Receptores Imunológicos/genética , Receptores X de Retinoides/metabolismo , Risco , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/genética , Via de Sinalização Wnt/genéticaRESUMO
BACKGROUND: P73 belongs to the p53 family of cell survival regulators with the corresponding locus Trp73 producing the N-terminally distinct isoforms, TAp73 and DeltaNp73. Recently, two studies have implicated the murine Trp73 in the modulation in phospho-tau accumulation in aged wild type mice and in young mice modeling Alzheimer's disease (AD) suggesting that Trp73, particularly the DeltaNp73 isoform, links the accumulation of amyloid peptides to the creation of neurofibrillary tangles (NFTs). Here, we reevaluated tau pathologies in the same TgCRND8 mouse model as the previous studies. RESULTS: Despite the use of the same animal models, our in vivo studies failed to demonstrate biochemical or histological evidence for misprocessing of tau in young compound Trp73+/- + TgCRND8 mice or in aged Trp73+/- mice analyzed at the ages reported previously, or older. Secondly, we analyzed an additional mouse model where the DeltaNp73 was specifically deleted and confirmed a lack of impact of the DeltaNp73 allele, either in heterozygous or homozygous form, upon tau pathology in aged mice. Lastly, we also examined human TP73 for single nucleotide polymorphisms (SNPs) and/or copy number variants in a meta-analysis of 10 AD genome-wide association datasets. No SNPs reached significance after correction for multiple testing and no duplications/deletions in TP73 were found in 549 cases of AD and 544 non-demented controls. CONCLUSION: Our results fail to support P73 as a contributor to AD pathogenesis.