Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732154

RESUMO

The diagnosis of cardiovascular disease (CVD) is still limited. Therefore, this study demonstrates the presence of human ether-a-go-go-related gene 1 (hERG1) and heat shock protein 47 (Hsp47) on the surface of small extracellular vesicles (sEVs) in human peripheral blood and their association with CVD. In this research, 20 individuals with heart failure and 26 participants subjected to cardiac stress tests were enrolled. The associations between hERG1 and/or Hsp47 in sEVs and CVD were established using Western blot, flow cytometry, electron microscopy, ELISA, and nanoparticle tracking analysis. The results show that hERG1 and Hsp47 were present in sEV membranes, extravesicularly exposing the sequences 430AFLLKETEEGPPATE445 for hERG1 and 169ALQSINEWAAQTT- DGKLPEVTKDVERTD196 for Hsp47. In addition, upon exposure to hypoxia, rat primary cardiomyocytes released sEVs into the media, and human cardiomyocytes in culture also released sEVs containing hERG1 (EV-hERG1) and/or Hsp47 (EV-Hsp47). Moreover, the levels of sEVs increased in the blood when cardiac ischemia was induced during the stress test, as well as the concentrations of EV-hERG1 and EV-Hsp47. Additionally, the plasma levels of EV-hERG1 and EV-Hsp47 decreased in patients with decompensated heart failure (DHF). Our data provide the first evidence that hERG1 and Hsp47 are present in the membranes of sEVs derived from the human cardiomyocyte cell line, and also in those isolated from human peripheral blood. Total sEVs, EV-hERG1, and EV-Hsp47 may be explored as biomarkers for heart diseases such as heart failure and cardiac ischemia.


Assuntos
Biomarcadores , Doenças Cardiovasculares , Vesículas Extracelulares , Proteínas de Choque Térmico HSP47 , Miócitos Cardíacos , Humanos , Vesículas Extracelulares/metabolismo , Biomarcadores/sangue , Masculino , Doenças Cardiovasculares/metabolismo , Feminino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Pessoa de Meia-Idade , Animais , Proteínas de Choque Térmico HSP47/metabolismo , Ratos , Canal de Potássio ERG1/metabolismo , Idoso , Adulto , Canais de Potássio Éter-A-Go-Go/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/sangue
3.
Biol. Res ; 56: 8-8, 2023. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1429909

RESUMO

BACKGROUND: Sepsis is an uncontrolled inflammatory response against a systemic infection that results in elevated mortality, mainly induced by bacterial products known as endotoxins, producing endotoxemia. Disseminated intravascular coagulation (DIC) is frequently observed in septic patients and is associated with organ failure and death. Sepsis activates endothelial cells (ECs), promoting a prothrombotic phenotype contributing to DIC. Ion channel mediated calcium permeability participates in coagulation. The transient reception potential melastatin 7 (TRPM7) non-selective divalent cation channel that also contains an α-kinase domain, which is permeable to divalent cations including Ca2+, regulates endotoxin-stimulated calcium permeability in ECs and is associated with increased mortality in septic patients. However, whether endothelial TRPM7 mediates endotoxemia-induced coagulation is not known. Therefore, our aim was to examine if TRPM7 mediates coagulation during endotoxemia. RESULTS: The results showed that TRPM7 regulated endotoxin-induced platelet and neutrophil adhesion to ECs, dependent on the TRPM7 ion channel activity and by the α-kinase function. Endotoxic animals showed that TRPM7 mediated neutrophil rolling on blood vessels and intravascular coagulation. TRPM7 mediated the increased expression of the adhesion proteins, von Willebrand factor (vWF), intercellular adhesion molecule 1 (ICAM-1), and P-selectin, which were also mediated by the TRPM7 α-kinase function. Notably, endotoxin-induced expression of vWF, ICAM-1 and P-selectin were required for endotoxin-induced platelet and neutrophil adhesion to ECs. Endotoxemic rats showed increased endothelial TRPM7 expression associated with a procoagulant phenotype, liver and kidney dysfunction, increased death events and an increased relative risk of death. Interestingly, circulating ECs (CECs) from septic shock patients (SSPs) showed increased TRPM7 expression associated with increased DIC scores and decreased survival times. Additionally, SSPs with a high expression of TRPM7 in CECs showed increased mortality and relative risk of death. Notably, CECs from SSPs showed significant results from the AUROC analyses for predicting mortality in SSPs that were better than the Acute Physiology and Chronic Health Evaluation II (APACHE II) and the Sequential Organ Failure Assessment (SOFA) scores. CONCLUSIONS: Our study demonstrates that sepsis-induced DIC is mediated by TRPM7 in ECs. TRPM7 ion channel activity and α-kinase function are required by DIC-mediated sepsis-induced organ dysfunction and its expression are associated with increased mortality during sepsis. TRPM7 appears as a new prognostic biomarker to predict mortality associated to DIC in SSPs, and as a novel target for drug development against DIC during infectious inflammatory diseases.


Assuntos
Animais , Ratos , Sepse , Endotoxemia , Coagulação Intravascular Disseminada , Canais de Cátion TRPM , Fator de von Willebrand , Cálcio , Molécula 1 de Adesão Intercelular , Selectina-P , Células Endoteliais , Endotoxinas
4.
Front Pharmacol ; 13: 1003264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160442

RESUMO

Background: There is abundant ethnopharmacological evidence the uses of regarding Solanum species as antitumor and anticancer agents. Glycoalkaloids are among the molecules with antiproliferative activity reported in these species. Purpose: To evaluate the anticancer effect of the Solanum glycoalkaloid tomatine in hepatocellular carcinoma (HCC) in vitro (HepG2 cells) and in vivo models. Methods: The resazurin reduction assay was performed to detect the effect of tomatine on cell viability in human HepG2 cell lines. Programmed cell death was investigated by means of cellular apoptosis assays using Annexin V. The expression of cancer related proteins was detected by Western blotting (WB). Reactive oxygen species (ROS) and calcium were determined by 2,7-dichlorodihydrofluorescein diacetate and Fluo-4, respectively. Intrahepatic HepG2 xenograft mouse model was used to elucidate the effect of tomatine on tumor growth in vivo. Results and Discussion: Tomatine reduced HepG2 cell viability and induced the early apoptosis phase of cell death, consistently with caspase-3, -7, Bcl-2 family, and P53 proteins activation. Furthermore, tomatine increased intracellular ROS and cytosolic Ca+2 levels. Moreover, the NSG mouse xenograft model showed that treating mice with tomatine inhibited HepG2 tumor growth. Conclusion: Tomatine inhibits in vitro and in vivo HCC tumorigenesis in part via modulation of p53, Ca+2, and ROS signalling. Thus, the results suggest the potential cancer therapeutic use of tomatine in HCC patients.

5.
Neuron ; 110(10): 1656-1670.e12, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35276083

RESUMO

Non-cell-autonomous mechanisms contribute to neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), in which astrocytes release unidentified factors that are toxic to motoneurons (MNs). We report here that mouse and patient iPSC-derived astrocytes with diverse ALS/FTD-linked mutations (SOD1, TARDBP, and C9ORF72) display elevated levels of intracellular inorganic polyphosphate (polyP), a ubiquitous, negatively charged biopolymer. PolyP levels are also increased in astrocyte-conditioned media (ACM) from ALS/FTD astrocytes. ACM-mediated MN death is prevented by degrading or neutralizing polyP in ALS/FTD astrocytes or ACM. Studies further reveal that postmortem familial and sporadic ALS spinal cord sections display enriched polyP staining signals and that ALS cerebrospinal fluid (CSF) exhibits increased polyP concentrations. Our in vitro results establish excessive astrocyte-derived polyP as a critical factor in non-cell-autonomous MN degeneration and a potential therapeutic target for ALS/FTD. The CSF data indicate that polyP might serve as a new biomarker for ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/genética , Animais , Astrócitos , Proteína C9orf72/genética , Meios de Cultivo Condicionados/farmacologia , Demência Frontotemporal/genética , Humanos , Camundongos , Neurônios Motores , Polifosfatos
6.
ARS med. (Santiago, En línea) ; 46(4): 25-31, dic. 07, 2021.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1366312

RESUMO

Introducción: la enseñanza de cursos de ciencias básicas en carreras de la salud es un desafío por no estar directa e inmediatamente rela-cionada con el ámbito profesional. Por otra parte, las condiciones de estrés que ha impuesto el trabajo a distancia requiere de metodologías motivantes, y, que a su vez permitan una evaluación significativa. Objetivos: reportar las adaptaciones metodológicas y los resultados de una adaptación local de la metodología de especificaciones de las calificaciones y retroalimentación del trabajo. Métodos: se aplica una metodología de formación basada en la retroalimentación en el curso de Física para estudiantes de Tecnología Médica (N=106) durante un semestre. Las calificaciones promedio de los estudiantes fueron comparadas con las obtenidas en años anteriores. Para evaluar el desempeño docente se realizaron 2 encuestas a los estudiantes. El cumplimiento de los logros de aprendizaje se midió mediante auto-evaluación (escala likert 1 a 5) al inicio y término de cada uno de los cuatro capítulos. Resultados: las reprobaciones y eliminaciones de estudiantes en el curso fueron menores a años anteriores, siendo las notas significativamente mayores subiendo desde 4,89 a 6,29 (escala de 1 a 7, p<0,001). Los estudiantes se mostraron en un 95% satisfechos con el desempeño docente y finalmente, la auto-evaluación de logros de aprendizaje mostró un aumento promedio de 1 punto. Conclusiones: la metodología de evaluación basada en especificaciones adaptada a dos entregas y con evaluaciones en una escala no-binaria mejoró el rendimiento, los logros de los aprendizajes esperados y la motivación de los estudiantes.


Background: Teaching basic science courses in health careers is a challenge because these courses are not directly linked to professional practice. On the other hand, the stressful conditions imposed by distance work require motivating methodologies and a meaningful evaluation. Objectives: To report the methodological adaptations and the results of a local adaptation of the specifications grading and feedback methodology. Methods: A training methodology based on feedback is applied in the Physics course for Medical Technology students (N = 106) during one semester. We compared the students' average grades to those obtained in previous years with the same topics. To evaluate the teaching performance, we conducted two student surveys. We measure compliance with learning achievements by self-assessment (Likert scale 1 to 5) at the beginning and end of each of the four chapters. Results: Failures and eliminations of students in the course were lower than previous years, with significantly higher grades from 4.89 to 6.29 (p <0.001). The students were 95% satisfied with the teaching performance, and finally, the self-evaluation of learning achievements showed an average increase of 1 point. Conclusion: The evaluation methodology based on specifications adapted to two deliveries and evaluations on a non-binary scale improved the performance, expected learning achievements, and students' motivation.

7.
Front Pharmacol ; 11: 913, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655396

RESUMO

Ion channels have recently been recognized as novel therapeutic targets in cancer research since they are overexpressed in different histological tissues, and their activity is linked to proliferation, tumor progression, angiogenesis, metastasis, and apoptosis. Voltage gated-potassium channels (VGKC) are involved in cell proliferation, cancer progression, cell cycle transition, and apoptosis. Moreover, voltage-dependent sodium channels (VGSC) contribute to decreases in extracellular pH, which, in turn, promotes cancer cell migration and invasion. Furthermore, VGSC and VGKC modulate voltage-sensitive Ca2+ channel activity by controlling the membrane potential and regulating Ca2+ influx, which functions as a second messenger in processes related to proliferation, invasion, migration, and metastasis. The subgroup of these types of channels that have shown a high oncogenic potential have become known as "oncochannels", and the evidence has highlighted them as key potential therapeutic targets. Scorpion venoms contain a high proportion of peptide toxins that act by modulating voltage-gated Na+/K+ channel activity. Increasing scientific data have pointed out that scorpion venoms and their toxins can affect the activity of oncochannels, thus showing their potential for anticancer therapy. In this review, we provide an update of the most relevant voltage-gated Na+\K+ ion channels as cellular targets and discuss the possibility of using scorpion venom and toxins for anticancer therapy.

8.
FASEB J ; 34(6): 7847-7865, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32301552

RESUMO

Transient receptor potential melastatin 4 (TRPM4) is a Ca2+ -activated nonselective cationic channel that regulates cell migration and contractility. Increased TRPM4 expression has been related to pathologies, in which cytoskeletal rearrangement and cell migration are altered, such as metastatic cancer. Here, we identify the K+ channel tetramerization domain 5 (KCTD5) protein, a putative adaptor of cullin3 E3 ubiquitin ligase, as a novel TRPM4-interacting protein. We demonstrate that KCTD5 is a positive regulator of TRPM4 activity by enhancing its Ca2+ sensitivity. We show that through its effects on TRPM4 that KCTD5 promotes cell migration and contractility. Finally, we observed that both TRPM4 and KCTD5 expression are increased in distinct patterns in different classes of breast cancer tumor samples. Together, these data support that TRPM4 activity can be regulated through expression levels of either TRPM4 or KCTD5, not only contributing to increased understanding of the molecular mechanisms involved on the regulation of these important ion channels, but also providing information that could inform treatments based on targeting these distinct molecules that define TRPM4 activity.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/fisiologia , Canais de Potássio/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Mama/metabolismo , Mama/patologia , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Células MCF-7 , Prognóstico , Ubiquitina-Proteína Ligases/metabolismo
9.
Curr Mol Med ; 19(8): 547-559, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31288723

RESUMO

BACKGROUND: Main pathological features detected during sepsis and endotoxemia include over-secretion of pro-inflammatory cytokines and multiorgan dysfunction syndrome (MODS). Unfortunately, current clinical efforts to treat sepsis are unsatisfactory, and mortality remains high. Interestingly, transient receptor potential (TRP) melastatin 7 (TRPM7) ion channel controlling Ca2+ and Mg2+ permeability is involved in cytokine production and inflammatory response. Furthermore, TRPM7 downregulation has been shown to alleviate local symptoms in some models of sepsis, but its effects at a systemic level remain to be explored. OBJECTIVE: To test whether TRPM7 mediates cytokine production and MODS during endotoxemia. METHODS: Endotoxemic and sham-endotoxemic rats were subjected to pharmacological inhibition of TRPM7 using carvacrol, or to expression suppression by adenovirus delivery of shRNA (AdVshTRPM7). Then, cytokine and MODS levels in the blood were measured. RESULTS: Inhibition of TRPM7 with carvacrol and suppression with AdVshTRPM7 were both efficient in inhibiting the over-secretion of pro-inflammatory cytokines TNF-α, IL-1ß, IL-6, and IL-12, in endotoxemic rats, without inducing downregulation in blood levels of antiinflammatory cytokines IL-10 and IL-4. Additionally, the use of carvacrol and AdVshTRPM7 significantly prevented liver and pancreas dysfunction, altered metabolic function, and hypoglycemia, induced by endotoxemia. Furthermore, muscle mass wasting and cardiac muscle damage were also significantly reduced by the use of carvacrol and AdVshTRPM7 in endotoxemic rats. CONCLUSION: Our results indicate TRPM7 ion channel as a key protein regulating inflammatory responses and MODS during sepsis. Moreover, TRPM7 appears as a novel molecular target for the management of sepsis.


Assuntos
Cimenos/uso terapêutico , Síndrome da Liberação de Citocina/prevenção & controle , Citocinas/biossíntese , Endotoxemia/complicações , Vetores Genéticos/uso terapêutico , Insuficiência de Múltiplos Órgãos/prevenção & controle , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico , Canais de Cátion TRPM/antagonistas & inibidores , Adenoviridae/genética , Animais , Caquexia/etiologia , Caquexia/prevenção & controle , Cimenos/farmacologia , Síndrome da Liberação de Citocina/etiologia , Vetores Genéticos/genética , Hipoglicemia/etiologia , Hipoglicemia/prevenção & controle , Falência Hepática/etiologia , Falência Hepática/prevenção & controle , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/patologia , Músculo Esquelético/patologia , Miocárdio/patologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Ratos , Canais de Cátion TRPM/biossíntese , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/fisiologia
10.
Lab Invest ; 99(3): 421-437, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30664710

RESUMO

Systemic inflammatory diseases enhance circulating oxidative stress levels, which results in the oxidation of circulating high-density lipoprotein (oxHDL). Endothelial cell function can be negatively impacted by oxHDL, but the underlying mechanisms for this remain unclear. Some reports indicate that the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is also a receptor for oxHDL. However, it is unknown if oxHDL induces increased LOX-1 expression at the plasma membrane, as an event that supports endothelial dysfunction. Therefore, the aims of this study were to determine if oxHDL induces plasma-membrane level changes in LOX-1 and, if so, to describe the underlying mechanisms in endothelial cells. Our results demonstrate that the incubation of arterial or vein endothelial cells with oxHDL (and not HDL) induces the increase of LOX-1 expression at the plasma membrane; effect prevented by LOX-1 inhibition. Importantly, same results were observed in endothelial cells from oxHDL-treated rats. Furthermore, the observed oxHDL-induced LOX-1 expression is abolished by the down-regulation of NOX-2 expression with siRNA (and no others NOX isoforms), by the pharmacological inhibition of NAD(P)H oxidase (with DPI or apocynin) or by the inhibition of NF-κB transcription factor. Coherently, LOX-1 expression is augmented by the incubation of endothelial cells with H2O2 or GSSG even in absence of oxHDL, indicating that the NOX-2/ROS/ NF-κB axis is involved. Interestingly, oxHDL incubation also increases TNF-α expression, cytokine that induces LOX-1 expression. Thus, our results suggest a positive feedback mechanism for LOX-1 receptor during inflammatory condition where an oxidative burst will generate oxHDL from native HDL, activating LOX-1 receptor which in turn will increase the expression of NOX-2, TNF-α and LOX-1 receptor at the plasma membrane. In conclusion, oxHDL-induced translocation of LOX-1 to the plasma membrane could constitute an induction mechanism of endothelial dysfunction in systemic inflammatory diseases.


Assuntos
Células Endoteliais/metabolismo , Lipoproteínas HDL/metabolismo , Receptores Depuradores Classe E/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/metabolismo , Masculino , NADPH Oxidase 2/metabolismo , NF-kappa B/metabolismo , Oxirredução , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
11.
Sci Rep ; 8(1): 13190, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181620

RESUMO

Highly malignant triple-negative breast cancer (TNBC) cells rely mostly on glycolysis to maintain cellular homeostasis; however, mitochondria are still required for migration and metastasis. Taking advantage of the metabolic flexibility of TNBC MDA-MB-231 cells to generate subpopulations with glycolytic or oxidative phenotypes, we screened phenolic compounds containing an ortho-carbonyl group with mitochondrial activity and identified a bromoalkyl-ester of hydroquinone named FR58P1a, as a mitochondrial metabolism-affecting compound that uncouples OXPHOS through a protonophoric mechanism. In contrast to well-known protonophore uncoupler FCCP, FR58P1a does not depolarize the plasma membrane and its effect on the mitochondrial membrane potential and bioenergetics is moderate suggesting a mild uncoupling of OXPHOS. FR58P1a activates AMPK in a Sirt1-dependent fashion. Although the activation of Sirt1/AMPK axis by FR58P1a has a cyto-protective role, selectively inhibits fibronectin-dependent adhesion and migration in TNBC cells but not in non-tumoral MCF10A cells by decreasing ß1-integrin at the cell surface. Prolonged exposure to FR58P1a triggers a metabolic reprograming in TNBC cells characterized by down-regulation of OXPHOS-related genes that promote cell survival but comprise their ability to migrate. Taken together, our results show that TNBC cell migration is susceptible to mitochondrial alterations induced by small molecules as FR58P1a, which may have therapeutic implications.


Assuntos
Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Hidroquinonas/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular Tumoral , Metabolismo Energético/efeitos dos fármacos , Feminino , Humanos , Hidroquinonas/química , Integrina beta1/metabolismo , Sirtuína 1/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo
12.
Rev. méd. hondur ; 86(1/2): 7-10, ene-. jul. 2018.
Artigo em Espanhol | LILACS | ID: biblio-1007044

RESUMO

Introducción: El dengue es la enfermedad viral transmitida por mosquitos con la propagación más rápida en el mundo. En Honduras constituye un importante problema de salud pública debido a su alta incidencia. Bacillus thuringiensis var israelensis (Bti) es un agente de control biológico aplicado en el control de vectores, se ha utilizado recientemente como parte de la estrategia contra el Aedes aegypti en Honduras. El presente estudio tiene como objetivo evaluar la susceptibilidad de la larva de Ae. aegypti a Bti en Tegucigalpa, Honduras para el año 2014. Métodos: Una muestra de 960 larvas de Ae. aegypti se recogieron de recipientes de almacenamiento en viviendas de las colonias La Cañada y Nueva Suyapa, ubicados en Tegucigalpa, Honduras. Los bioensayos se realizaron de acuerdo con las directrices emitidas por la Organización Mundial de la Salud y la Red Latinoamericana de Control de Vectores. Se llevaron a cabo 12 bioensayos por cada concentración estudiada. Se utilizaron cuatro concentraciones de Bti: 0,5 mg/L, 1 mg/L, 2,5 mg/L y 5 mg/L. La mortalidad se registró a las 24 h. Resultados: Se encontraron valores de mortalidad larvaria de 98.734 % para la dosis de 0.5 mg/L; 99.375 % para 1 mg/L; 100 % para 2,5 mg/L y 100 % para 5 mg/l. Conclusiones: Bti ha probado ser efectivo contra las larvas de Ae. aegytpi, se recomienda su evaluación sistemática y de manera periódica para mejorar su aplicación y posible desarrollo de resistencia...(AU)


Assuntos
Animais , Bacillus thuringiensis , Aedes , Dengue/complicações , Controle de Vetores de Doenças
13.
Redox Biol ; 16: 199-208, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29524842

RESUMO

Aerobic metabolism brings inexorably the production of reactive oxygen species (ROS), which are counterbalanced by intrinsic antioxidant defenses avoiding deleterious intracellular effects. Redox balance is the resultant of metabolic functioning under environmental inputs (i.e. diet, pollution) and the activity of intrinsic antioxidant machinery. Monitoring of intracellular hydrogen peroxide has been successfully achieved by redox biosensor advent; however, to track the intrinsic disulfide bond reduction capacity represents a fundamental piece to understand better how redox homeostasis is maintained in living cells. In the present work, we compared the informative value of steady-state measurements and the kinetics of HyPer, a H2O2-sensitive fluorescent biosensor, targeted at the cytosol, mitochondrion and endoplasmic reticulum. From this set of data, biosensor signal recovery from an oxidized state raised as a suitable parameter to discriminate reducing capacity of a close environment. Biosensor recovery was pH-independent, condition demonstrated by experiments on pH-clamped cells, and sensitive to pharmacological perturbations of enzymatic disulfide reduction. Also, ten human cell lines were characterized according their H2O2-pulse responses, including their capacity to reduce disulfide bonds evaluated in terms of their migratory capacity. Finally, cellular migration experiments were conducted to study whether migratory efficiency was associated with the disulfide reduction activity. The migration efficiency of each cell type correlates with the rate of signal recovery measured from the oxidized biosensor. In addition, HyPer-expressing cells treated with N-acetyl-cysteine had accelerated recovery rates and major migratory capacities, both reversible effects upon treatment removal. Our data demonstrate that the HyPer signal recovery offers a novel methodological tool to track the cellular impact of redox active biomolecules.


Assuntos
Antioxidantes/isolamento & purificação , Técnicas Biossensoriais , Peróxido de Hidrogênio/química , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Mitocôndrias/metabolismo , Oxirredução
14.
Salud pública Méx ; 58(3): 371-377, may.-jun. 2016. tab, graf
Artigo em Espanhol | LILACS | ID: lil-793023

RESUMO

Resumen: Objetivo: Determinar el serotipo y perfil de resistencia a antibióticos de cepas de Salmonella spp. presentes en la carne de res que se expende en la capital mexicana. Material y métodos: Se analizaron 100 muestras de carne molida. Se aisló el patógeno por métodos convencionales y se confirmó por PCR (gen InvA, 284 pb). El perfil de resistencia a antibióticos se determinó por el método de Kirby-Bauer y la serotipificación por el esquema de Kauffman-White. Resultados: Se detectaron los serotipos Lomita (6), Derby (4), Senftenberg (2), Javiana y Cannsttat (1). Se observó alta resistencia a ampicilina (18/19), carbenicilina (16/19), tetraciclina (13/19) y trimetoprim-sulfametoxasol (13/19). Cinco cepas fueron no tipificables y 14 mostraron multirresistencia. Conclusiones: La carne de res que se vende en el principal centro de consumo del país está contaminada con serotipos de Salmonella spp. relevantes para la salud pública. Una importante proporción de éstos es resistente a múltiples antibióticos.


Abstract: Objective: To determine the serotype and antibiotic resistance profile of Salmonella spp. isolated from retail ground beef in Mexico City. Materials and methods: A total of 100 samples of ground beef were analyzed. The pathogen was isolated by conventional methods and confirmed by PCR (invA gene, 284 bp).The antibiotic resistance profile was determined by the Kirby-Bauer method while serotyping was performed according to the Kauffman-White scheme. Results: We isolated a total of 19 strains of Lomita (6), Derby (4), Senftenberg (2), Javiana and Cannsttat (1) and undetermined (5) serotypes. The strains showed a high resistance rate to ampicillin (18/19), carbenicillin (16/19), tetracyclin (13/19), and trimethoprim-sulfamethoxazole (13/19). Multidrug resistance was observed in 14 isolates. Conclusions: Several Salmonella spp. serotypes of public health significance are circulating in ground beef sold in the major Mexican city. Some of these strains are multi-drug resistance.


Assuntos
Humanos , Animais , Salmonella/efeitos dos fármacos , Resistência Microbiana a Medicamentos , Carne Vermelha/microbiologia , Microbiologia de Alimentos , Salmonella/isolamento & purificação , Salmonella/classificação , Intoxicação Alimentar por Salmonella , Bovinos , Sorotipagem , Saúde da População Urbana , Produtos da Carne/microbiologia , México
15.
Pflugers Arch ; 467(12): 2473-84, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26265381

RESUMO

In the heart, the main pathway for calcium influx is mediated by L-type calcium channels, a multi-subunit complex composed of the pore-forming subunit CaV1.2 and the auxiliary subunits CaVα2δ1 and CaVß2. To date, five distinct CaVß2 transcriptional start site (TSS) variants (CaVß2a-e) varying only in the composition and length of the N-terminal domain have been described, each of them granting distinct biophysical properties to the L-type current. However, the physiological role of these variants in Ca(2+) handling in the native tissue has not been explored. Our results show that four of these variants are present in neonatal rat cardiomyocytes. The contribution of those CaVß2 TSS variants on endogenous L-type current and Ca(2+) handling was explored by adenoviral-mediated overexpression of each CaVß2 variant in cultured newborn rat cardiomyocytes. As expected, all CaVß2 TSS variants increased L-type current density and produced distinctive changes on L-type calcium channel (LTCC) current activation and inactivation kinetics. The characteristics of the induced calcium transients were dependent on the TSS variant overexpressed. Moreover, the amplitude of the calcium transients varied depending on the subunit involved, being higher in cardiomyocytes transduced with CaVß2a and smaller in CaVß2d. Interestingly, the contribution of Ca(2+) influx and Ca(2+) release on total calcium transients, as well as the sarcoplasmic calcium content, was found to be TSS-variant-dependent. Remarkably, determination of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) messenger RNA (mRNA) abundance and cell size change indicates that CaVß2 TSS variants modulate the cardiomyocyte hypertrophic state. In summary, we demonstrate that expression of individual CaVß2 TSS variants regulates calcium handling in cardiomyocytes and, consequently, has significant repercussion in the development of hypertrophy.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Miócitos Cardíacos/metabolismo , Sítio de Iniciação de Transcrição , Potenciais de Ação , Animais , Canais de Cálcio Tipo L/genética , Células Cultivadas , Ventrículos do Coração/citologia , Ventrículos do Coração/crescimento & desenvolvimento , Miócitos Cardíacos/fisiologia , Ratos
16.
J Hypertens ; 33(5): 981-92, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25909699

RESUMO

OBJECTIVE: To study whether transient receptor potential melastatin 4 (TRPM4) participates in endothelial fibrosis and to investigate the underlying mechanism. METHODS: Primary human endothelial cells were used and pharmacological and short interfering RNA-based approaches were used to test the transforming growth factor beta (TGF-ß)/activin receptor-like kinase 5 (ALK5) pathway participation and contribution of TRPM7 ion channel. RESULTS: Suppression of TRPM4 expression leads to decreased endothelial protein expression and increased expression of fibrotic and extracellular matrix markers. Furthermore, TRPM4 downregulation increases intracellular Ca levels as a potential condition for fibrosis. The underlying mechanism of endothelial fibrosis shows that inhibition of TRPM4 expression induces TGF-ß1 and TGF-ß2 expression, which act through their receptor, ALK5, and the nuclear translocation of the profibrotic transcription factor smad4. CONCLUSION: TRPM4 acts to maintain endothelial features and its loss promotes fibrotic conversion via TGF-ß production. The regulation of TRPM4 levels could be a target for preserving endothelial function during inflammatory diseases.


Assuntos
Células Endoteliais/metabolismo , Fibrose/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Canais de Cátion TRPM/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Cálcio/metabolismo , Diferenciação Celular/genética , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Receptor do Fator de Crescimento Transformador beta Tipo I , Canais de Cátion TRPM/metabolismo
17.
Cell Signal ; 25(7): 1614-24, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23602937

RESUMO

The transient receptor potential melastatin (TRPM) protein family is an extensive group of ion channels expressed in several types of mammalian cells. Many studies have shown that these channels are crucial for performing several physiological functions. Additionally, a large body of evidence indicates that these channels are also involved in numerous human diseases, known as channelopathies. A characteristic event frequently observed during pathological states is the raising in intracellular oxidative agents over reducing molecules, shifting the redox balance and inducing oxidative stress. In particular, three members of the TRPM subfamily, TRPM2, TRPM4 and TRPM7, share the remarkable feature that their activities are modulated by oxidative stress. Because of the increase in oxidative stress, these TRPM channels function aberrantly, promoting the onset and development of diseases. Increases, absences, or modifications in the function of these redox-modulated TRPM channels are associated with cell dysfunction and human pathologies. Therefore, the effect of oxidative stress on ion channels becomes an essential part of the pathogenic mechanism. Thus, oxidative stress-modulated ion channels are more susceptible to generating pathological states than oxidant-independent channels. This review examines the most relevant findings regarding the participation of the oxidative stress-modulated TRPM ion channels, TRPM2, TRPM4, and TRPM7, in human diseases. In addition, the potential roles of these channels as therapeutic tools and targets for drug design are discussed.


Assuntos
Estresse Oxidativo , Canais de Cátion TRPM/fisiologia , Animais , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Humanos , Imunidade Inata , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Filogenia , Conformação Proteica , Canais de Cátion TRPM/química
18.
Antioxid Redox Signal ; 15(9): 2425-38, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21539414

RESUMO

AIMS: To assess the mechanisms involved in lipopolysaccharide (LPS)-induced neuronal cell death, we examined the cellular consequences of LPS exposure in differentiated PC12 neurons and primary hippocampal neurons. RESULTS: Our data show that LPS is able to induce PC12 neuronal cell death without the participation of glial cells. Neuronal cell death was mediated by an increase in cellular reactive oxygen species (ROS) levels. Considering the prevalent role of specific ion channels in mediating the deleterious effect of ROS, we assessed their contribution to this process. Neurons exposed to LPS showed a significant intracellular Ca(2+) overload, and nonselective cationic channel blockers inhibited LPS-induced neuronal death. In particular, we observed that both LPS and hydrogen peroxide exposure strongly increased the expression of the transient receptor protein melastatin 7 (TRPM7), which is an ion channel directly implicated in neuronal cell death. Further, both LPS-induced TRPM7 overexpression and LPS-induced neuronal cell death were decreased with dithiothreitol, dipheniliodonium, and apocynin. Finally, knockdown of TRPM7 expression using small interference RNA technology protected primary hippocampal neurons and differentiated PC12 neurons from the LPS challenge. INNOVATION: This is the first report showing that TRPM7 is a key protein involved in neuronal death after LPS challenge. CONCLUSION: We conclude that LPS promotes an abnormal ROS-dependent TRPM7 overexpression, which plays a crucial role in pathologic events, thus leading to neuronal dysfunction and death.


Assuntos
Lipopolissacarídeos/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Western Blotting , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Células Cultivadas , Citometria de Fluxo , Neurônios/citologia , Células PC12 , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Cátion TRPM/genética
19.
Channels (Austin) ; 5(3): 280-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21525790

RESUMO

Angiotensin II regulation of L-type calcium currents in cardiac muscle is controversial and the underlying signaling events are not completely understood. Moreover, the possible role of auxiliary subunit composition of the channels in Angiotensin II modulation of L-type calcium channels has not yet been explored. In this work we study the role of Ca(v)ß subunits and the intracellular signaling responsible for L-type calcium current modulation by Angiotensin II. In cardiomyocytes, Angiotensin II exposure induces rapid inhibition of L-type current with a magnitude that is correlated with the rate of current inactivation. Semi-quantitative PCR of cardiomyocytes at different days of culture reveals changes in the Ca(v)ß subunits expression pattern that are correlated with the rate of current inactivation and with Angiotensin II effect. Over-expression of individual b subunits in heterologous systems reveals that the magnitude of Angiotensin II inhibition is dependent on the Ca(v)ß subunit isoform, with Ca(v)ß(1b) containing channels being more strongly regulated. Ca(v)ß(2a) containing channels were insensitive to modulation and this effect was partially due to the N-terminal palmitoylation sites of this subunit. Moreover, PLC or diacylglycerol lipase inhibition prevents the Angiotensin II effect on L-type calcium channels, while PKC inhibition with chelerythrine does not, suggesting a role of arachidonic acid in this process. Finally, we show that in intact cardiomyocytes the magnitude of calcium transients on spontaneous beating cells is modulated by Angiotensin II in a Ca(v)ß subunit-dependent manner. These data demonstrate that Ca(v)ß subunits alter the magnitude of inhibition of L-type current by Angiotensin II.


Assuntos
Angiotensina II/metabolismo , Canais de Cálcio Tipo L/metabolismo , Regulação da Expressão Gênica/fisiologia , Potenciais da Membrana/fisiologia , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Angiotensina II/farmacologia , Animais , Antibacterianos/farmacologia , Ácido Araquidônico/metabolismo , Benzofenantridinas/farmacologia , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Lipase Lipoproteica/farmacologia , Lipoilação/efeitos dos fármacos , Lipoilação/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/genética , Miócitos Cardíacos/citologia , Fosfoinositídeo Fosfolipase C/farmacologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Vasoconstritores/metabolismo , Vasoconstritores/farmacologia
20.
Mol Brain ; 3: 6, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20181083

RESUMO

Direct interaction with the beta subunit of the heterotrimeric G protein complex causes voltage-dependent inhibition of N-type calcium channels. To further characterize the molecular determinants of this interaction, we performed scanning mutagenesis of residues 372-387 and 410-428 of the N-type channel alpha1 subunit, in which individual residues were replaced by either alanine or cysteine. We coexpressed wild type Gbeta1gamma2 subunits with either wild type or point mutant N-type calcium channels, and voltage-dependent, G protein-mediated inhibition of the channels (VDI) was assessed using patch clamp recordings. The resulting data indicate that Arg376 and Val416 of the alpha1 subunit, residues which are surface-exposed in the presence of the calcium channel beta subunit, contribute significantly to the functional inhibition by Gbeta1. To further characterize the roles of Arg376 and Val416 in this interaction, we performed secondary mutagenesis of these residues, coexpressing the resulting mutants with wild type Gbeta1gamma2 subunits and with several isoforms of the auxiliary beta subunit of the N-type channel, again assessing VDI using patch clamp recordings. The results confirm the importance of Arg376 for G protein-mediated inhibition and show that a single amino acid substitution to phenylalanine drastically alters the abilities of auxiliary calcium channel subunits to regulate G protein inhibition of the channel.


Assuntos
Arginina/genética , Canais de Cálcio Tipo N , Subunidades beta da Proteína de Ligação ao GTP/antagonistas & inibidores , Subunidades gama da Proteína de Ligação ao GTP/antagonistas & inibidores , Mutagênese , Valina/genética , Animais , Canais de Cálcio Tipo N/química , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Linhagem Celular , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Humanos , Técnicas de Patch-Clamp , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA