Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 28(12): 2527-2539, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33171139

RESUMO

Myotonic dystrophy type 1 (DM1) is a debilitating multisystemic disorder, caused by expansion of a CTG microsatellite repeat in the 3' untranslated region of the DMPK (dystrophia myotonica protein kinase) gene. To date, novel therapeutic approaches have focused on transient suppression of the mutant, repeat-expanded RNA. However, recent developments in the field of genome editing have raised the exciting possibility of inducing permanent correction of the DM1 genetic defect. Specifically, repurposing of the prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) system has enabled programmable, site-specific, and multiplex genome editing. CRISPR-based strategies for the treatment of DM1 can be applied either directly to patients, or indirectly through the ex vivo modification of patient-derived cells, and they include excision of the repeat expansion, insertion of synthetic polyadenylation signals upstream of the repeat, steric interference with RNA polymerase II procession through the repeat leading to transcriptional downregulation of DMPK, and direct RNA targeting of the mutant RNA species. Potential obstacles to such therapies are discussed, including the major challenge of Cas9 and guide RNA transgene/ribonuclear protein delivery, off-target gene editing, vector genome insertion at cut sites, on-target unintended mutagenesis (e.g., repeat inversion), pre-existing immunity to Cas9 or AAV antigens, immunogenicity, and Cas9 persistence.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos , Terapia Genética/métodos , Distrofia Miotônica/terapia , Animais , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Humanos , Camundongos , Distrofia Miotônica/genética , Miotonina Proteína Quinase/genética , RNA Guia de Cinetoplastídeos/genética , Resultado do Tratamento , Expansão das Repetições de Trinucleotídeos/genética
2.
Cells ; 9(11)2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153033

RESUMO

Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by decreased levels of the survival of motoneuron (SMN) protein. Post-translational mechanisms for regulation of its stability are still elusive. Thus, we aimed to identify regulatory phosphorylation sites that modulate function and stability. Our results show that SMN residues S290 and S292 are phosphorylated, of which SMN pS290 has a detrimental effect on protein stability and nuclear localization. Furthermore, we propose that phosphatase and tensin homolog (PTEN), a novel phosphatase for SMN, counteracts this effect. In light of recent advancements in SMA therapies, a significant need for additional approaches has become apparent. Our study demonstrates S290 as a novel molecular target site to increase the stability of SMN. Characterization of relevant kinases and phosphatases provides not only a new understanding of SMN function, but also constitutes a novel strategy for combinatorial therapeutic approaches to increase the level of SMN in SMA.


Assuntos
Aminoácidos/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/química , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosforilação , Fosfosserina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteólise , Relação Estrutura-Atividade
3.
Mol Ther ; 25(7): 1580-1587, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28392161

RESUMO

Extracellular vesicles (EVs) are cell-derived, membranous nanoparticles that mediate intercellular communication by transferring biomolecules, including proteins and RNA, between cells. As a result of their suggested natural capability to functionally deliver RNA, EVs may be harnessed as therapeutic RNA carriers. One major limitation for their translation to therapeutic use is the lack of an efficient, robust, and scalable method to load EVs with RNA molecules of interest. Here, we evaluated and optimized methods to load EVs with cholesterol-conjugated small interfering RNAs (cc-siRNAs) by systematic evaluation of the influence of key parameters, including incubation time, volume, temperature, and EV:cc-siRNA ratio. EV loading under conditions that resulted in the highest siRNA retention percentage, incubating 15 molecules of cc-siRNA per EV at 37°C for 1 hr in 100 µL, facilitated concentration-dependent silencing of human antigen R (HuR), a therapeutic target in cancer, in EV-treated cells. These results may accelerate the development of EV-based therapeutics.


Assuntos
Colesterol/química , Sistemas de Liberação de Medicamentos , Proteína Semelhante a ELAV 1/antagonistas & inibidores , Vesículas Extracelulares/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , RNA Interferente Pequeno/metabolismo , Animais , Sequência de Bases , Transporte Biológico , Linhagem Celular , Linhagem Celular Tumoral , Colesterol/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Vesículas Extracelulares/química , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Permeabilidade , RNA Interferente Pequeno/genética , Temperatura
4.
Brain ; 140(4): 887-897, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334866

RESUMO

A non-coding hexanucleotide repeat expansion in intron 1 of the C9orf72 gene is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), however, the precise molecular mechanism by which the C9orf72 hexanucleotide repeat expansion directs C9ALS/FTD pathogenesis remains unclear. Here, we report a novel disease mechanism arising due to the interaction of C9ORF72 with the RAB7L1 GTPase to regulate vesicle trafficking. Endogenous interaction between C9ORF72 and RAB7L1 was confirmed in human SH-SY5Y neuroblastoma cells. The C9orf72 hexanucleotide repeat expansion led to haploinsufficiency resulting in severely defective intracellular and extracellular vesicle trafficking and a dysfunctional trans-Golgi network phenotype in patient-derived fibroblasts and induced pluripotent stem cell-derived motor neurons. Genetic ablation of RAB7L1or C9orf72 in SH-SY5Y cells recapitulated the findings in C9ALS/FTD fibroblasts and induced pluripotent stem cell neurons. When C9ORF72 was overexpressed or antisense oligonucleotides were targeted to the C9orf72 hexanucleotide repeat expansion to upregulate normal variant 1 transcript levels, the defective vesicle trafficking and dysfunctional trans-Golgi network phenotypes were reversed, suggesting that both loss- and gain-of-function mechanisms play a role in disease pathogenesis. In conclusion, we have identified a novel mechanism for C9ALS/FTD pathogenesis highlighting the molecular regulation of intracellular and extracellular vesicle trafficking as an important pathway in C9ALS/FTD pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/metabolismo , Proteínas/metabolismo , Proteínas rab1 de Ligação ao GTP/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Transporte Biológico , Proteína C9orf72 , Células COS , Linhagem Celular , Chlorocebus aethiops , Expansão das Repetições de DNA , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Íntrons , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Oligonucleotídeos Antissenso/farmacologia , Linhagem , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/patologia , Proteínas/genética , Proteínas rab de Ligação ao GTP , Proteínas rab1 de Ligação ao GTP/genética
5.
Nat Struct Mol Biol ; 21(11): 955-961, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25306109

RESUMO

What causes the tissue-specific pathology of diseases resulting from mutations in housekeeping genes? Specifically, in spinocerebellar ataxia type 7 (SCA7), a neurodegenerative disorder caused by a CAG-repeat expansion in ATXN7 (which encodes an essential component of the mammalian transcription coactivation complex, STAGA), the factors underlying the characteristic progressive cerebellar and retinal degeneration in patients were unknown. We found that STAGA is required for the transcription initiation of miR-124, which in turn mediates the post-transcriptional cross-talk between lnc-SCA7, a conserved long noncoding RNA, and ATXN7 mRNA. In SCA7, mutations in ATXN7 disrupt these regulatory interactions and result in a neuron-specific increase in ATXN7 expression. Strikingly, in mice this increase is most prominent in the SCA7 disease-relevant tissues, namely the retina and cerebellum. Our results illustrate how noncoding RNA-mediated feedback regulation of a ubiquitously expressed housekeeping gene may contribute to specific neurodegeneration.


Assuntos
Cerebelo/metabolismo , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética , RNA Longo não Codificante/genética , Retina/metabolismo , Ataxias Espinocerebelares/genética , Animais , Ataxina-7 , Linhagem Celular Tumoral , Cerebelo/patologia , Retroalimentação Fisiológica , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , MicroRNAs/metabolismo , Mutação , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retina/patologia , Transdução de Sinais , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia , Iniciação da Transcrição Genética
6.
Neurotherapeutics ; 10(4): 621-31, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24068583

RESUMO

The most fundamental roles of non-coding RNAs (ncRNAs) and epigenetic mechanisms are the guidance of cellular differentiation in development and the regulation of gene expression in adult tissues. In brain, both ncRNAs and the various epigenetic gene regulatory mechanisms play a fundamental role in neurogenesis and normal neuronal function. Thus, epigenetic chromatin remodelling can render coding sites transcriptionally inactive by DNA methylation, histone modifications or antisense RNA interactions. On the other hand, microRNAs (miRNAs) are ncRNA molecules that can regulate the expression of hundreds of genes post-transcriptionally, typically recognising binding sites in the 3' untranslated region (UTR) of mRNA transcripts. Furthermore, there are a myriad of interactions in the interface of miRNAs and epigenetics. For example, epigenetic mechanisms can silence miRNA coding sites, and miRNAs can be the effectors of transcriptional gene silencing, targeting complementary promoters or silencing the expression of epigenetic modifier genes like MECP2 and EZH2 leading to global changes in the epigenome. Alterations in this regulatory machinery play a key role in the pathology of complex disorders including cancer and neurological diseases. For example, miRNA genes are frequently inactivated by epimutations in gliomas. Here we describe the interactions between epigenetic and ncRNA regulatory systems and discuss therapeutic potential, with an emphasis on tumors, cognitive disorders and neurodegenerative diseases.


Assuntos
Encéfalo/metabolismo , Epigênese Genética , Doenças do Sistema Nervoso/metabolismo , RNA não Traduzido/metabolismo , Metilação de DNA , Humanos , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/terapia , Regiões Promotoras Genéticas , RNA não Traduzido/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA