Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Front Immunol ; 15: 1382638, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715601

RESUMO

Recovery from respiratory pneumococcal infections generates lung-localized protection against heterotypic bacteria, mediated by resident memory lymphocytes. Optimal protection in mice requires re-exposure to pneumococcus within days of initial infection. Serial surface marker phenotyping of B cell populations in a model of pneumococcal heterotypic immunity revealed that bacterial re-exposure stimulates the immediate accumulation of dynamic and heterogeneous populations of B cells in the lung, and is essential for the establishment of lung resident memory B (BRM) cells. The B cells in the early wave were activated, proliferating locally, and associated with both CD4+ T cells and CXCL13. Antagonist- and antibody-mediated interventions were implemented during this early timeframe to demonstrate that lymphocyte recirculation, CD4+ cells, and CD40 ligand (CD40L) signaling were all needed for lung BRM cell establishment, whereas CXCL13 signaling was not. While most prominent as aggregates in the loose connective tissue of bronchovascular bundles, morphometry and live lung imaging analyses showed that lung BRM cells were equally numerous as single cells dispersed throughout the alveolar septae. We propose that CD40L signaling from antigen-stimulated CD4+ T cells in the infected lung is critical to establishment of local BRM cells, which subsequently protect the airways and parenchyma against future potential infections.


Assuntos
Linfócitos T CD4-Positivos , Ligante de CD40 , Pulmão , Células B de Memória , Streptococcus pneumoniae , Animais , Ligante de CD40/metabolismo , Ligante de CD40/imunologia , Camundongos , Streptococcus pneumoniae/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/microbiologia , Linfócitos T CD4-Positivos/imunologia , Células B de Memória/imunologia , Células B de Memória/metabolismo , Infecções Pneumocócicas/imunologia , Camundongos Endogâmicos C57BL , Memória Imunológica , Quimiocina CXCL13/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Modelos Animais de Doenças , Transdução de Sinais , Ativação Linfocitária/imunologia
2.
Hum Genomics ; 17(1): 72, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542347

RESUMO

Head and neck cancers are a complex malignancy comprising multiple anatomical sites, with cancer of the oral cavity ranking among the deadliest and the most disfiguring cancers globally. Oral cancer (OC) constitutes a subset of head and neck cancer cases, presenting primarily as tobacco- and alcohol-associated oral squamous cell carcinoma (OSCC), with a 5-year survival rate of ~ 65%, partly due to the lack of early detection and effective treatments. OSCC arises from premalignant lesions (PMLs) in the oral cavity through a multi-step series of clinical and histopathological stages, including varying degrees of epithelial dysplasia. To gain insights into the molecular mechanisms associated with the progression of PMLs to OSCC, we profiled the whole transcriptome of 66 human PMLs comprising leukoplakia with dysplasia and hyperkeratosis non-reactive (HkNR) pathologies, alongside healthy controls and OSCC. Our data revealed that PMLs were enriched in gene signatures associated with cellular plasticity, such as partial EMT (p-EMT) phenotypes, and with immune response. Integrated analyses of the host transcriptome and microbiome further highlighted a significant association between differential microbial abundance and PML pathway activity, suggesting a contribution of the oral microbiome toward PML evolution to OSCC. Collectively, this study reveals molecular processes associated with PML progression that may help early diagnosis and disease interception at an early stage.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Lesões Pré-Cancerosas , Humanos , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/genética , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Transcriptoma/genética , Análise de Sequência de RNA
3.
Cell Stem Cell ; 30(9): 1199-1216.e7, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37625411

RESUMO

Life-long reconstitution of a tissue's resident stem cell compartment with engrafted cells has the potential to durably replenish organ function. Here, we demonstrate the engraftment of the airway epithelial stem cell compartment via intra-airway transplantation of mouse or human primary and pluripotent stem cell (PSC)-derived airway basal cells (BCs). Murine primary or PSC-derived BCs transplanted into polidocanol-injured syngeneic recipients give rise for at least two years to progeny that stably display the morphologic, molecular, and functional phenotypes of airway epithelia. The engrafted basal-like cells retain extensive self-renewal potential, evident by the capacity to reconstitute the tracheal epithelium through seven generations of secondary transplantation. Using the same approach, human primary or PSC-derived BCs transplanted into NOD scid gamma (NSG) recipient mice similarly display multilineage airway epithelial differentiation in vivo. Our results may provide a step toward potential future syngeneic cell-based therapy for patients with diseases resulting from airway epithelial cell damage or dysfunction.


Assuntos
Células-Tronco Pluripotentes , Humanos , Animais , Camundongos , Terapia Baseada em Transplante de Células e Tecidos , Células Epiteliais , Epitélio , Camundongos Endogâmicos NOD , Camundongos SCID
4.
Transl Res ; 260: 46-60, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37353110

RESUMO

Head and neck cancers, which include oral squamous cell carcinoma (OSCC) as a major subsite, exhibit cellular plasticity that includes features of an epithelial-mesenchymal transition (EMT), referred to as partial-EMT (p-EMT). To identify molecular mechanisms contributing to OSCC plasticity, we performed a multiphase analysis of single cell RNA sequencing (scRNAseq) data from human OSCC. This included a multiresolution characterization of cancer cell subgroups to identify pathways and cell states that are heterogeneously represented, followed by casual inference analysis to elucidate activating and inhibitory relationships between these pathways and cell states. This approach revealed signaling networks associated with hierarchical cell state transitions, which notably included an association between ß-catenin-driven CREB-binding protein (CBP) activity and mTORC1 signaling. This network was associated with subpopulations of cancer cells that were enriched for markers of the p-EMT state and poor patient survival. Functional analyses revealed that ß-catenin/CBP induced mTORC1 activity in part through the transcriptional regulation of a raptor-interacting protein, chaperonin containing TCP1 subunit 5 (CCT5). Inhibition of ß-catenin-CBP activity through the use of the orally active small molecule, E7386, reduced the expression of CCT5 and mTORC1 activity in vitro, and inhibited p-EMT-associated markers and tumor development in a murine model of OSCC. Our study highlights the use of multiresolution network analyses of scRNAseq data to identify targetable signals for therapeutic benefit, thus defining an underappreciated association between ß-catenin/CBP and mTORC1 signaling in head and neck cancer plasticity.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Humanos , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proteína de Ligação a CREB/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Via de Sinalização Wnt
5.
PLoS Comput Biol ; 19(5): e1011118, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200395

RESUMO

Inference of biological network structures is often performed on high-dimensional data, yet is hindered by the limited sample size of high throughput "omics" data typically available. To overcome this challenge, often referred to as the "small n, large p problem," we exploit known organizing principles of biological networks that are sparse, modular, and likely share a large portion of their underlying architecture. We present SHINE-Structure Learning for Hierarchical Networks-a framework for defining data-driven structural constraints and incorporating a shared learning paradigm for efficiently learning multiple Markov networks from high-dimensional data at large p/n ratios not previously feasible. We evaluated SHINE on Pan-Cancer data comprising 23 tumor types, and found that learned tumor-specific networks exhibit expected graph properties of real biological networks, recapture previously validated interactions, and recapitulate findings in literature. Application of SHINE to the analysis of subtype-specific breast cancer networks identified key genes and biological processes for tumor maintenance and survival as well as potential therapeutic targets for modulating known breast cancer disease genes.


Assuntos
Neoplasias da Mama , Redes Reguladoras de Genes , Humanos , Feminino , Redes Reguladoras de Genes/genética , Neoplasias da Mama/genética , Algoritmos
6.
J Exp Clin Cancer Res ; 42(1): 116, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37150829

RESUMO

BACKGROUND: Bronchial premalignant lesions (PMLs) are composed primarily of cells resembling basal epithelial cells of the airways, which through poorly understood mechanisms have the potential to progress to lung squamous cell carcinoma (LUSC). Despite ongoing efforts that have mapped gene expression and cell diversity across bronchial PML pathologies, signaling and transcriptional events driving malignancy are poorly understood. Evidence has suggested key roles for the Hippo pathway effectors YAP and TAZ and associated TEAD and TP63 transcription factor families in bronchial basal cell biology and LUSC. In this study we examine the functional association of YAP/TAZ, TEADs and TP63 in bronchial epithelial cells and PMLs. METHODS: We performed RNA-seq in primary human bronchial epithelial cells following small interfering RNA (siRNA)-mediated depletion of YAP/TAZ, TEADs or TP63, and combined these data with ChIP-seq analysis of these factors. Directly activated or repressed genes were identified and overlapping genes were profiled across gene expression data obtained from progressive or regressive human PMLs and across lung single cell RNA-seq data sets. RESULTS: Analysis of genes regulated by YAP/TAZ, TEADs, and TP63 in human bronchial epithelial cells revealed a converged transcriptional network that is strongly associated with the pathological progression of bronchial PMLs. Our observations suggest that YAP/TAZ-TEAD-TP63 associate to cooperatively promote basal epithelial cell proliferation and repress signals associated with interferon responses and immune cell communication. Directly repressed targets we identified include the MHC Class II transactivator CIITA, which is repressed in progressive PMLs and associates with adaptive immune responses in the lung. Our findings provide molecular insight into the control of gene expression events driving PML progression, including those contributing to immune evasion, offering potential new avenues for lung cancer interception. CONCLUSIONS: Our study identifies important gene regulatory functions for YAP/TAZ-TEAD-TP63 in the early stages of lung cancer development, which notably includes immune-suppressive roles, and suggest that an assessment of the activity of this transcriptional complex may offer a means to identify immune evasive bronchial PMLs and serve as a potential therapeutic target.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Pulmonares , Lesões Pré-Cancerosas , Humanos , Regulação da Expressão Gênica , Neoplasias Pulmonares/genética , Lesões Pré-Cancerosas/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP , Fatores de Transcrição de Domínio TEA
7.
Curr Top Dev Biol ; 154: 285-315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37100521

RESUMO

The respiratory system is composed of a multitude of cells that organize to form complex branched airways that end in alveoli, which respectively function to guide air flow and mediate gas exchange with the bloodstream. The organization of the respiratory sytem relies on distinct forms of cell polarity, which guide lung morphogenesis and patterning in development and provide homeostatic barrier protection from microbes and toxins. The stability of lung alveoli, the luminal secretion of surfactants and mucus in the airways, and the coordinated motion of multiciliated cells that generate proximal fluid flow, are all critical functions regulated by cell polarity, with defects in polarity contributing to respiratory disease etiology. Here, we summarize the current knowledge of cell polarity in lung development and homeostasis, highlighting key roles for polarity in alveolar and airway epithelial function and outlining relationships with microbial infections and diseases, such as cancer.


Assuntos
Polaridade Celular , Pulmão , Homeostase , Células Epiteliais/fisiologia
8.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993637

RESUMO

Head and neck cancers are a complex malignancy comprising multiple anatomical sites, with cancer of the oral cavity ranking among the deadliest and most disfiguring cancers globally. Oral cancer (OC) constitutes a subset of head and neck cancer cases, presenting primarily as tobacco-and alcohol-associated oral squamous cell carcinoma (OSCC), with a 5-year survival rate of ∻65%, partly due to the lack of early detection and effective treatments. OSCC arises from premalignant lesions (PMLs) in the oral cavity through a multi-step series of clinical and histopathological stages, including varying degrees of epithelial dysplasia. To gain insights into the molecular mechanisms associated with the progression of PMLs to OSCC, we profiled the whole transcriptome of 66 human PMLs comprising leukoplakia with dysplasia and hyperkeratosis non-reactive (HkNR) pathologies, alongside healthy controls and OSCC. Our data revealed that PMLs were enriched in gene signatures associated with cellular plasticity, such as partial EMT (p-EMT) phenotypes, and with immune response. Integrated analyses of the host transcriptome and microbiome further highlighted a significant association between differential microbial abundance and PML pathway activity, suggesting a contribution of the oral microbiome towards PML evolution to OSCC. Collectively, this study reveals molecular processes associated with PML progression that may help early diagnosis and disease interception at an early stage. AUTHOR SUMMARY: Patients harboring oral premalignant lesions (PMLs) have an increased risk of developing oral squamous cell carcinoma (OSCC), but the underlying mechanisms driving transformation of PMLs to OSCC remain poorly understood. In this study, Khan et al., analyzed a newly generated dataset of gene expression and microbial profiles of oral tissues from patients diagnosed with PMLs from differing histopathological groups, including hyperkeratosis not reactive ( HkNR ) and dysplasia, comparing these profiles with OSCC and normal oral mucosa. Significant similarities between PMLs and OSCC were observed, with PMLs manifesting several cancer hallmarks, including oncogenic and immune pathways. The study also demonstrates associations between the abundance of multiple microbial species and PML groups, suggesting a potential contribution of the oral microbiome to the early stages of OSCC development. The study offers insights into the nature of the molecular, cellular and microbial heterogeneity of oral PMLs and suggests that molecular and clinical refinement of PMLs may provide opportunities for early disease detection and interception.

9.
Nat Commun ; 13(1): 7198, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443313

RESUMO

Basal-like breast cancers, an aggressive breast cancer subtype that has poor treatment options, are thought to arise from luminal mammary epithelial cells that undergo basal plasticity through poorly understood mechanisms. Using genetic mouse models and ex vivo primary organoid cultures, we show that conditional co-deletion of the LATS1 and LATS2 kinases, key effectors of Hippo pathway signaling, in mature mammary luminal epithelial cells promotes the development of Krt14 and Sox9-expressing basal-like carcinomas that metastasize over time. Genetic co-deletion experiments revealed that phenotypes resulting from the loss of LATS1/2 activity are dependent on the transcriptional regulators YAP/TAZ. Gene expression analyses of LATS1/2-deleted mammary epithelial cells notably revealed a transcriptional program that associates with human basal-like breast cancers. Our study demonstrates in vivo roles for the LATS1/2 kinases in mammary epithelial homeostasis and luminal-basal fate control and implicates signaling networks induced upon the loss of LATS1/2 activity in the development of basal-like breast cancer.


Assuntos
Carcinoma , Proteínas Serina-Treonina Quinases , Humanos , Animais , Camundongos , Proteínas Serina-Treonina Quinases/genética , Genes Reguladores , Transdução de Sinais , Células Epiteliais , Proteínas Supressoras de Tumor/genética
10.
Cell Syst ; 13(9): 724-736.e9, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36057257

RESUMO

Identifying the chemical regulators of biological pathways is a time-consuming bottleneck in developing therapeutics and research compounds. Typically, thousands to millions of candidate small molecules are tested in target-based biochemical screens or phenotypic cell-based screens, both expensive experiments customized to each disease. Here, our uncustomized, virtual, profile-based screening approach instead identifies compounds that match to pathways based on the phenotypic information in public cell image data, created using the Cell Painting assay. Our straightforward correlation-based computational strategy retrospectively uncovered the expected, known small-molecule regulators for 32% of positive-control gene queries. In prospective, discovery mode, we efficiently identified new compounds related to three query genes and validated them in subsequent gene-relevant assays, including compounds that phenocopy or pheno-oppose YAP1 overexpression and kill a Yap1-dependent sarcoma cell line. This image-profile-based approach could replace many customized labor- and resource-intensive screens and accelerate the discovery of biologically and therapeutically useful compounds.


Assuntos
Estudos Prospectivos , Linhagem Celular , Estudos Retrospectivos
11.
Cancer Sci ; 113(11): 3710-3721, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35816400

RESUMO

At the initial stage of carcinogenesis, oncogenic transformation occurs in single cells within epithelial layers. However, the behavior and fate of the newly emerging transformed cells remain enigmatic. Here, using originally established mouse models, we investigate the fate of RasV12-transformed cells that appear in a mosaic manner within epithelial tissues. In the lung bronchial epithelium, most majority of RasV12-transformed cells are apically extruded, whereas noneliminated RasV12 cells are often basally delaminated leading to various noncell-autonomous changes in surrounding environments; macrophages and activated fibroblasts are accumulated, and normal epithelial cells overlying RasV12 cells overproliferate and form a convex multilayer, which is termed a 'dome-like structure'. In addition, basally extruded RasV12 cells acquire certain features of epithelial-mesenchymal transition (EMT). Furthermore, the expression of COX-2 is profoundly elevated in RasV12 cells in dome-like structures, and treatment with the COX inhibitor ibuprofen suppresses the recruitment of activated fibroblasts and moderately diminishes the formation of dome-like structures. Therefore, basal extrusion of single-oncogenic mutant cells can induce a tumor microenvironment and EMT and generate characteristic precancerous lesions, providing molecular insights into the earlier steps of cancer development.


Assuntos
Transformação Celular Neoplásica , Células Epiteliais , Cães , Camundongos , Animais , Células Madin Darby de Rim Canino , Células Epiteliais/patologia , Transformação Celular Neoplásica/metabolismo , Epitélio/metabolismo , Oncogenes , Microambiente Tumoral
12.
Nat Commun ; 13(1): 3732, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768444

RESUMO

Melanoma is commonly driven by activating mutations in the MAP kinase BRAF; however, oncogenic BRAF alone is insufficient to promote melanomagenesis. Instead, its expression induces a transient proliferative burst that ultimately ceases with the development of benign nevi comprised of growth-arrested melanocytes. The tumor suppressive mechanisms that restrain nevus melanocyte proliferation remain poorly understood. Here we utilize cell and murine models to demonstrate that oncogenic BRAF leads to activation of the Hippo tumor suppressor pathway, both in melanocytes in vitro and nevus melanocytes in vivo. Mechanistically, we show that oncogenic BRAF promotes both ERK-dependent alterations in the actin cytoskeleton and whole-genome doubling events, which independently reduce RhoA activity to promote Hippo activation. We also demonstrate that functional impairment of the Hippo pathway enables oncogenic BRAF-expressing melanocytes to bypass nevus formation and rapidly form melanomas. Our data reveal that the Hippo pathway enforces the stable arrest of nevus melanocytes and represents a critical barrier to melanoma development.


Assuntos
Melanoma , Nevo , Neoplasias Cutâneas , Animais , Melanócitos/metabolismo , Melanoma/patologia , Camundongos , Mutação , Nevo/genética , Nevo/metabolismo , Nevo/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias Cutâneas/patologia
13.
Mol Cancer Res ; 20(5): 712-721, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35105672

RESUMO

Lysine-specific demethylase 1 (LSD1) is a histone demethylase that contributes to the etiology of oral squamous cell carcinoma (OSCC) in part by promoting cancer stem cell phenotypes. The molecular signals regulated by LSD1, or acting with LSD1, are poorly understood, particularly in the development of OSSC. In this study, we show that conditional deletion of the Lsd1 gene or pharmacologic inhibition of LSD1 in the tongue epithelium leads to reduced development of OSCC following exposure to the tobacco carcinogen 4NQO. LSD1 inhibition attenuated proliferation and clonogenic survival and showed an additive effect when combined with the YAP inhibitor Verteporfin. Interestingly, LSD1 inhibition upregulated the expression of PD-L1, leading to immune checkpoint inhibitor therapy responses. IMPLICATIONS: Collectively, our studies reveal a critical role for LSD1 in OSCC development and identification of tumor growth targeting strategies that can be combined with LSD1 inhibition for improved therapeutic application.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Histona Desmetilases/genética , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
14.
Life Sci Alliance ; 5(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35181634

RESUMO

Adipose tissue fibrosis is regulated by the chronic and progressive metabolic imbalance caused by differences in caloric intake and energy expenditure. By exploring the cellular heterogeneity within fibrotic adipose tissue, we demonstrate that early adipocyte progenitor cells expressing both platelet-derived growth factor receptor (PDGFR) α and ß are the major contributors to extracellular matrix deposition. We show that the fibrotic program is promoted by senescent macrophages. These macrophages were enriched in the fibrotic stroma and exhibit a distinct expression profile. Furthermore, we demonstrate that these cells display a blunted phagocytotic capacity and acquire a senescence-associated secretory phenotype. Finally, we determined that osteopontin, which was expressed by senescent macrophages in the fibrotic environment promoted progenitor cell proliferation, fibrotic gene expression, and inhibited adipogenesis. Our work reveals that obesity promotes macrophage senescence and provides a conceptual framework for the discovery of rational therapeutic targets for metabolic and inflammatory disease associated with obesity.


Assuntos
Adipócitos , Tecido Adiposo , Adipócitos/metabolismo , Tecido Adiposo/patologia , Fibrose , Humanos , Macrófagos/metabolismo , Obesidade/metabolismo
15.
Am J Physiol Lung Cell Mol Physiol ; 322(4): L550-L563, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35137631

RESUMO

During bacterial pneumonia, alveolar epithelial cells are critical for maintaining gas exchange and providing antimicrobial as well as pro-immune properties. We previously demonstrated that leukemia inhibitory factor (LIF), an IL-6 family cytokine, is produced by type II alveolar epithelial cells (ATII) and is critical for tissue protection during bacterial pneumonia. However, the target cells and mechanisms of LIF-mediated protection remain unknown. Here, we demonstrate that antibody-induced LIF blockade remodels the lung epithelial transcriptome in association with increased apoptosis. Based on these data, we performed pneumonia studies using a novel mouse model in which LIFR (the unique receptor for LIF) is absent in lung epithelium. Although LIFR is expressed on the surface of epithelial cells, its absence only minimally contributed to tissue protection during pneumonia. Single-cell RNA-sequencing (scRNAseq) was conducted to identify adult murine lung cell types most prominently expressing Lifr, revealing endothelial cells, mesenchymal cells, and ATIIs as major sources of Lifr. Sequencing data indicated that ATII cells were significantly impacted by pneumonia, with additional differences observed in response to LIF neutralization, including but not limited to gene programs related to cell death, injury, and inflammation. Overall, our data suggest that LIF signaling on epithelial cells alters responses in this cell type during pneumonia. However, our results also suggest separate and perhaps more prominent roles of LIFR in other cell types, such as endothelial cells or mesenchymal cells, which provide grounds for future investigation.


Assuntos
Lesão Pulmonar , Pneumonia Bacteriana , Animais , Apoptose , Células Endoteliais/metabolismo , Fator Inibidor de Leucemia/genética , Camundongos , Transdução de Sinais
16.
Cell Rep ; 36(9): 109636, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34469722

RESUMO

Alveolar epithelial type 2 cell (AEC2) dysfunction is implicated in the pathogenesis of adult and pediatric interstitial lung disease (ILD), including idiopathic pulmonary fibrosis (IPF); however, identification of disease-initiating mechanisms has been impeded by inability to access primary AEC2s early on. Here, we present a human in vitro model permitting investigation of epithelial-intrinsic events culminating in AEC2 dysfunction, using patient-specific induced pluripotent stem cells (iPSCs) carrying an AEC2-exclusive disease-associated variant (SFTPCI73T). Comparing syngeneic mutant versus gene-corrected iPSCs after differentiation into AEC2s (iAEC2s), we find that mutant iAEC2s accumulate large amounts of misprocessed and mistrafficked pro-SFTPC protein, similar to in vivo changes, resulting in diminished AEC2 progenitor capacity, perturbed proteostasis, altered bioenergetic programs, time-dependent metabolic reprogramming, and nuclear factor κB (NF-κB) pathway activation. Treatment of SFTPCI73T-expressing iAEC2s with hydroxychloroquine, a medication used in pediatric ILD, aggravates the observed perturbations. Thus, iAEC2s provide a patient-specific preclinical platform for modeling the epithelial-intrinsic dysfunction at ILD inception.


Assuntos
Células Epiteliais Alveolares/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Pulmonares Intersticiais/genética , Proteína C Associada a Surfactante Pulmonar/genética , Células Epiteliais Alveolares/patologia , Animais , Linhagem Celular , Proliferação de Células , Metabolismo Energético , Predisposição Genética para Doença , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Mediadores da Inflamação/metabolismo , Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/patologia , Camundongos Knockout , Mutação , NF-kappa B/metabolismo , Fenótipo , Proteostase , Proteína C Associada a Surfactante Pulmonar/metabolismo , Transdução de Sinais
17.
Cell Rep ; 36(2): 109347, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260916

RESUMO

Proper lung function relies on the precise balance of specialized epithelial cells that coordinate to maintain homeostasis. Herein, we describe essential roles for the transcriptional regulators YAP/TAZ in maintaining lung epithelial homeostasis, reporting that conditional deletion of Yap and Wwtr1/Taz in the lung epithelium of adult mice results in severe defects, including alveolar disorganization and the development of airway mucin hypersecretion. Through in vivo lineage tracing and in vitro molecular experiments, we reveal that reduced YAP/TAZ activity promotes intrinsic goblet transdifferentiation of secretory airway epithelial cells. Global gene expression and chromatin immunoprecipitation sequencing (ChIP-seq) analyses suggest that YAP/TAZ act cooperatively with TEA domain (TEAD) transcription factors and the NuRD complex to suppress the goblet cell fate program, directly repressing the SPDEF gene. Collectively, our study identifies YAP/TAZ as critical factors in lung epithelial homeostasis and offers molecular insight into the mechanisms promoting goblet cell differentiation, which is a hallmark of many lung diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem da Célula , Células Caliciformes/citologia , Células Caliciformes/metabolismo , Homeostase , Pulmão/citologia , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Proteínas de Sinalização YAP , Adulto , Animais , Células Cultivadas , Citocinas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Via de Sinalização Hippo , Humanos , Metaplasia , Camundongos , Camundongos Knockout , Mucina-5AC/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Fatores de Transcrição de Domínio TEA/metabolismo
18.
Sci Rep ; 11(1): 11154, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045583

RESUMO

Sjögren's syndrome (SS) is a complex autoimmune disease associated with lymphocytic infiltration and secretory dysfunction of salivary and lacrimal glands. Although the etiology of SS remains unclear, evidence suggests that epithelial damage of the glands elicits immune and fibrotic responses in SS. To define molecular changes underlying epithelial tissue damage in SS, we laser capture microdissected (LCM) labial salivary gland epithelia from 8 SS and 8 non-SS controls for analysis by RNA sequencing (RNAseq). Computational interrogation of gene expression signatures revealed that, in addition to a division of SS and non-SS samples, there was a potential intermediate state overlapping clustering of SS and non-SS samples. Differential expression analysis uncovered signaling events likely associated with distinct SS pathogenesis. Notable signals included the enrichment of IFN-γ and JAK/STAT-regulated genes, and the induction of genes encoding secreted factors, such as LTF, BMP3, and MMP7, implicated in immune responses, matrix remodeling and tissue destruction. Identification of gene expression signatures of salivary epithelia associated with mixed clinical and histopathological characteristics suggests that SS pathology may be defined by distinct molecular subtypes. We conclude that gene expression changes arising in the damaged salivary epithelia may offer novel insights into the signals contributing to SS development and progression.


Assuntos
Regulação da Expressão Gênica , Expressão Gênica , Glândulas Salivares/metabolismo , Síndrome de Sjogren/genética , Adulto , Idoso , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Epitélio/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Glândulas Salivares/patologia , Transdução de Sinais/fisiologia , Síndrome de Sjogren/metabolismo , Síndrome de Sjogren/patologia
19.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903236

RESUMO

Molecular events that drive the development of precancerous lesions in the bronchial epithelium, which are precursors of lung squamous cell carcinoma (LUSC), are poorly understood. We demonstrate that disruption of epithelial cellular polarity, via the conditional deletion of the apical determinant Crumbs3 (Crb3), initiates and sustains precancerous airway pathology. The loss of Crb3 in adult luminal airway epithelium promotes the uncontrolled activation of the transcriptional regulators YAP and TAZ, which stimulate intrinsic signals that promote epithelial cell plasticity and paracrine signals that induce basal-like cell growth. We show that aberrant polarity and YAP/TAZ-regulated gene expression associates with human bronchial precancer pathology and disease progression. Analyses of YAP/TAZ-regulated genes further identified the ERBB receptor ligand Neuregulin-1 (NRG1) as a key transcriptional target and therapeutic targeting of ERBB receptors as a means of preventing and treating precancerous cell growth. Our observations offer important molecular insight into the etiology of LUSC and provides directions for potential interception strategies of lung cancer.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Glicoproteínas de Membrana/genética , Neuregulina-1/genética , Lesões Pré-Cancerosas/genética , Proteínas de Sinalização YAP/genética , Carcinoma de Células Escamosas/patologia , Polaridade Celular/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Epitélio/metabolismo , Epitélio/patologia , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Lesões Pré-Cancerosas/patologia , Transdução de Sinais/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/genética
20.
J Biol Chem ; 295(49): 16897-16904, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33109615

RESUMO

Heterotrimeric G-proteins are signaling switches broadly divided into four families based on the sequence and functional similarity of their Gα subunits: Gs, Gi/o, Gq/11, and G12/13 Artificial mutations that activate Gα subunits of each of these families have long been known to induce oncogenic transformation in experimental systems. With the advent of next-generation sequencing, activating hotspot mutations in Gs, Gi/o, or Gq/11 proteins have also been identified in patient tumor samples. In contrast, patient tumor-associated G12/13 mutations characterized to date lead to inactivation rather than activation. By using bioinformatic pathway analysis and signaling assays, here we identified cancer-associated hotspot mutations in Arg-200 of Gα13 (encoded by GNA13) as potent activators of oncogenic signaling. First, we found that components of a G12/13-dependent signaling cascade that culminates in activation of the Hippo pathway effectors YAP and TAZ is frequently altered in bladder cancer. Up-regulation of this signaling cascade correlates with increased YAP/TAZ activation transcriptional signatures in this cancer type. Among the G12/13 pathway alterations were mutations in Arg-200 of Gα13, which we validated to promote YAP/TAZ-dependent (TEAD) and MRTF-A/B-dependent (SRE.L) transcriptional activity. We further showed that this mechanism relies on the same RhoGEF-RhoGTPase cascade components that are up-regulated in bladder cancers. Moreover, Gα13 Arg-200 mutants induced oncogenic transformation in vitro as determined by focus formation assays. In summary, our findings on Gα13 mutants establish that naturally occurring hotspot mutations in Gα subunits of any of the four families of heterotrimeric G-proteins are putative cancer drivers.


Assuntos
Carcinogênese/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Transdução de Sinais , ADP Ribose Transferases/farmacologia , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Toxinas Botulínicas/farmacologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Células NIH 3T3 , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/efeitos dos fármacos , Regulação para Cima , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Proteínas de Sinalização YAP , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA