Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100781, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34000298

RESUMO

The unfolded protein response plays an evolutionarily conserved role in homeostasis, and its dysregulation often leads to human disease, including diabetes and cancer. IRE1α is a major transducer that conveys endoplasmic reticulum stress via biochemical signals, yet major gaps persist in our understanding of how the detection of stress is converted to one of several molecular outcomes. It is known that, upon sensing unfolded proteins via its endoplasmic reticulum luminal domain, IRE1α dimerizes and then oligomerizes (often visualized as clustering). Once assembled, the kinase domain trans-autophosphorylates a neighboring IRE1α, inducing a conformational change that activates the RNase effector domain. However, the full details of how the signal is transmitted are not known. Here, we describe a previously unrecognized role for helix αK, located between the kinase and RNase domains of IRE1α, in conveying this critical conformational change. Using constructs containing mutations within this interdomain helix, we show that distinct substitutions affect oligomerization, kinase activity, and the RNase activity of IRE1α differentially. Furthermore, using both biochemical and computational methods, we found that different residues at position 827 specify distinct conformations at distal sites of the protein, such as in the RNase domain. Of importance, an RNase-inactive mutant, L827P, can still dimerize with wildtype monomers, but this mutation inactivates the wildtype molecule and renders leukemic cells more susceptible to stress. We surmise that helix αK is a conduit for the activation of IRE1α in response to stress.


Assuntos
Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linhagem Celular , Endorribonucleases/química , Humanos , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Ribonucleases/metabolismo
2.
Free Radic Biol Med ; 65: 1340-1351, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24120970

RESUMO

The antioxidant enzyme methionine sulfoxide reductase A (MsrA) is highly expressed in the retinal pigment epithelium (RPE), a support tissue for neighboring photoreceptors. MsrA protein levels correlate with sensitivity of RPE in culture to experimental oxidative stress. To investigate whether and how MsrA affects RPE functionality regardless of oxidative stress, we tested the effects of acute silencing or overexpression of MsrA on the phagocytosis of photoreceptor outer segment fragments (POS), a demanding, daily function of the RPE that is essential for vision. Endogenous MsrA localized to mitochondria and cytosol of rat RPE in culture. RPE cells manipulated to express higher or lower levels of MsrA than control cells showed no signs of cell death but increased or decreased, respectively, POS binding as well as engulfment. These effects of altered MsrA protein concentration on phagocytosis were independent of the levels of oxidative stress. However, altering MsrA expression had no effect on phagocytosis when mitochondrial respiration was inhibited. Furthermore, ATP content directly correlated with MsrA protein levels in RPE cells that used mitochondrial oxidative phosphorylation for ATP synthesis but not in RPE cells that relied on glycolysis alone. Overexpressing MsrA was sufficient to increase specifically the activity of complex IV of the respiratory chain, whereas activity of complex II and mitochondrial content were unaffected. Thus, MsrA probably enhances ATP synthesis by increasing complex IV activity. Such contribution of MsrA to energy metabolism is independent of its function in protection from elevated oxidative stress but contributes to routine but vital photoreceptor support by RPE cells.


Assuntos
Trifosfato de Adenosina/biossíntese , Mitocôndrias/metabolismo , Oxirredutases/imunologia , Fagocitose/imunologia , Epitélio Pigmentado da Retina/metabolismo , Animais , Antioxidantes , Linhagem Celular , Complexo II de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Metabolismo Energético/genética , Metabolismo Energético/imunologia , Células Epiteliais/citologia , Glicólise , Fosforilação Oxidativa , Estresse Oxidativo/imunologia , Oxirredutases/biossíntese , Oxirredutases/genética , Fagocitose/genética , Ligação Proteica/imunologia , Interferência de RNA , RNA Interferente Pequeno , Ratos , Segmento Externo das Células Fotorreceptoras da Retina/imunologia , Epitélio Pigmentado da Retina/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA