RESUMO
The wood frog, Rana sylvatica endures whole body freezing for weeks/months while overwintering at subzero temperatures. Survival of long-term freezing requires not only cryoprotectants but also strong metabolic rate depression (MRD) and reorganization of essential processes in order to maintain a balance between ATP-producing and ATP-consuming processes. Citrate synthase (CS) (E.C. 2.3.3.1) is an important irreversible enzyme of the tricarboxylic acid (TCA) cycle and forms a crucial checkpoint for many metabolic processes. Present study investigated the regulation of CS from wood frog liver during freezing. CS was purified to homogeneity by a two-step chromatographic process. Kinetic and regulatory parameters of the enzyme were investigated and, notably, demonstrated a significant decrease in the Vmax of the purified form of CS from frozen frogs as compared to controls when assayed at both 22 °C and 5 °C. This was further supported by a decrease in the maximum activity of CS from liver of frozen frogs. Immunoblotting also showed changes in posttranslational modifications with a significant decrease in threonine phosphorylation (by 49 %) for CS from frozen frogs. Taken together, these results suggest that CS is suppressed and TCA flux is inhibited during freezing, likely to support MRD survival of harsh winters.
Assuntos
Fígado , Ranidae , Animais , Congelamento , Citrato (si)-Sintase/metabolismo , Ranidae/metabolismo , Trifosfato de Adenosina/metabolismoRESUMO
The wood frog (Rana sylvatica) undergoes physiological and metabolic changes to withstand subzero temperatures and whole body freezing during the winter months. Along with metabolic rate depression, high concentrations of glucose are produced as a cryoprotectant by liver and distributed to all other tissues. Pyruvate kinase (PK; EC:2.7.1.40), the final enzyme of glycolysis, plays an important role in the modulation of glucose metabolism and, therefore, overall metabolic regulation. The present study investigated the functional and kinetic properties of purified PK from liver of control (5 °C acclimated) and frozen (-2.5 °C for 24 h) wood frogs. Liver PK was purified to homogeneity by a two-step chromatographic process, followed by analysis of enzyme properties. A significant decrease in the affinity of PK for its substrates, phosphoenolpyruvate (PEP) and adenosine diphosphate (ADP) at 22 °C and 5 °C was noted in liver from frozen frogs, as compared with controls. Immunoblotting also revealed freeze-responsive changes in posttranslational modifications with a significant increase in serine and threonine phosphorylation by 1.46-fold and 1.73- fold for PK from frozen frogs as compared with controls. Furthermore, a test of thermal stability showed that PK from liver of frozen wood frogs showed greater stability as compared with PK from control animals. Taken together, these results suggest that PK is negatively regulated, and glycolysis is suppressed, during freezing. This response acts as an important survival strategy for maintaining continuously elevated levels of cryoprotectant in frogs while they remain in a hypometabolic frozen state.
Assuntos
Fígado , Piruvato Quinase , Animais , Congelamento , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Fosforilação , Fígado/metabolismo , Ranidae/metabolismoRESUMO
Rana sylvatica (also known as Boreorana sylvatica) is one of the few vertebrates that spend extreme winters showing no physiological signs of life. Up to 70% of the total body water of the wood frog freezes as extracellular ice. Survival in extreme conditions requires regulation at transcriptional and translational levels to activate prosurvival pathways. N6-methyladenosine (m6A) methylation is one of the most common RNA modifications, regulating transcript processing and translation by executing important functions that affect regulatory pathways in stress conditions. In the study, regulation of m6A-related proteins in the liver of R. sylvatica was analyzed during 24 h frozen and 8 h thaw conditions. Decreases in the activity of demethylases of 28.44 ± 0.4% and 24.1 ± 0.9% of control values in frozen and thaw tissues, respectively, were observed. Total protein levels of m6A methyltransferase complex components methyltransferase-like 14 and Wilm's tumor associated protein were increased by 1.28-fold and 1.42-fold, respectively, during freezing. Demethylase fat mass and obesity, however, showed a decreasing trend, with a significant decrease in abundance during recovery from frozen conditions. Levels of mRNA degraders YTHDF2 and YTHDC2 also decreased under stress. Overall, increased levels of m6A methylation complex components, and suppressed levels of readers/erasers, provide evidence for the potential role of RNA methylation in freezing survival and its regulation in a hypometabolic state.