Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(1): e0280526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36652434

RESUMO

AP endonuclease 1 (APE1) processes DNA lesions including apurinic/apyrimidinic sites and 3´-blocking groups, mediating base excision repair and single strand break repair. Much effort has focused on developing specific inhibitors of APE1, which could have important applications in basic research and potentially lead to clinical anticancer agents. We used structural, biophysical, and biochemical methods to characterize several reported inhibitors, including 7-nitroindole-2-carboxylic acid (CRT0044876), given its small size, reported potency, and widespread use for studying APE1. Intriguingly, NMR chemical shift perturbation (CSP) experiments show that CRT0044876 and three similar indole-2-carboxylic acids bind a pocket distal from the APE1 active site. A crystal structure confirms these findings and defines the pose for 5-nitroindole-2-carboxylic acid. However, dynamic light scattering experiments show the indole compounds form colloidal aggregates that could bind (sequester) APE1, causing nonspecific inhibition. Endonuclease assays show the compounds lack significant APE1 inhibition under conditions (detergent) that disrupt aggregation. Thus, binding of the indole-2-carboxylic acids at the remote pocket does not inhibit APE1 repair activity. Myricetin also forms aggregates and lacks APE1 inhibition under aggregate-disrupting conditions. Two other reported compounds (MLS000552981, MLS000419194) inhibit APE1 in vitro with low micromolar IC50 and do not appear to aggregate in this concentration range. However, NMR CSP experiments indicate the compounds do not bind specifically to apo- or Mg2+-bound APE1, pointing to a non-specific mode of inhibition, possibly DNA binding. Our results highlight methods for rigorous interrogation of putative APE1 inhibitors and should facilitate future efforts to discover compounds that specifically inhibit this important repair enzyme.


Assuntos
Antineoplásicos , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Humanos , Antineoplásicos/farmacologia , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Indóis/farmacologia
2.
Biomol NMR Assign ; 17(1): 37-41, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36539586

RESUMO

Heterogeneous ribonuclear protein A18 (hnRNP A18) is an RNA binding protein (RBP) involved in the hypoxic cellular stress response and regulation of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) expression in melanoma, breast cancer, prostate cancer, and colon cancer solid tumors. hnRNP A18 is comprised of an N-terminal structured RNA recognition motif (RMM) and a C-terminal intrinsically disordered domain (IDD). Upon cellar stressors, such as UV and hypoxia, hnRNP A18 is phosphorylated by casein kinase 2 (CK2) and glycogen synthase kinase 3ß (GSK-3ß). After phosphorylation, hnRNP A18 translocates from the nucleus to the cytosol where it interacts with pro-survival mRNA transcripts for proteins such as hypoxia inducible factor 1α and CTLA-4. Both the hypoxic cellular response and modulation of immune checkpoints by cancer cells promote chemoradiation resistance and metastasis. In this study, the 1 H, 13 C, and 15 N backbone and sidechain resonances of the 172 amino acid hnRNP A18 were assigned sequence-specifically and provide a framework for future NMR-based drug discovery studies toward targeting hnRNP A18. These data will also enable the investigation of the dynamic structural changes within the IDD of hnRNP A18 upon phosphorylation by CK2 and GSK-3ß to provide critical insight into the structure and function of IDDs.


Assuntos
Proteínas de Transporte , Ribonucleoproteínas Nucleares Heterogêneas , Masculino , Humanos , RNA Mensageiro/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Antígeno CTLA-4/metabolismo , Proteínas de Transporte/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ligação Proteica
3.
Biomol NMR Assign ; 15(2): 383-387, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34156643

RESUMO

SET (TAF-1ß/I2PP2A) is a ubiquitously expressed, multifunctional protein that plays a role in regulating diverse cellular processes, including cell cycle progression, migration, apoptosis, transcription, and DNA repair. SET expression is ubiquitous across all cell types. However, it is overexpressed or post-translationally modified in several solid tumors and blood cancers, where expression levels are correlated with worsening clinical outcomes. SET exerts its oncogenic effects primarily through the formation of antagonistic protein complexes with the tumor suppressor, protein phosphatase 2A (PP2A), and the well-known metastasis suppressor, nm23-H1. PP2A inhibition is often observed as a secondary driver of tumorigenesis and metastasis in human cancers. Preclinical studies have shown that the pharmacological reactivation of PP2A combined with potent inhibitors of the primary driver oncogene produces synergistic cell death and decreased drug resistance. Therefore, the development of novel inhibitors of the SET-PP2A interaction presents an attractive approach to reactivation of PP2A, and thereby, tumor suppression. NMR provides a unique platform to investigate protein targets in their natively folded state to identify protein and small-molecule ligands and report on the protein internal dynamics. The backbone 1HN, 13C, and 15N NMR resonance assignments were completed for the 204 amino acid nucleosome assembly protein-1 (NAP-1) domain of the human SET oncoprotein (residues 23-225). These assignments provide a vital first step toward the development of novel PP2A reactivators via SET-selective inhibition.


Assuntos
Proteína Fosfatase 2
4.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805767

RESUMO

Novel therapeutics are needed to treat pathologies associated with the Clostridioides difficile binary toxin (CDT), particularly when C. difficile infection (CDI) occurs in the elderly or in hospitalized patients having illnesses, in addition to CDI, such as cancer. While therapies are available to block toxicities associated with the large clostridial toxins (TcdA and TcdB) in this nosocomial disease, nothing is available yet to treat toxicities arising from strains of CDI having the binary toxin. Like other binary toxins, the active CDTa catalytic subunit of CDT is delivered into host cells together with an oligomeric assembly of CDTb subunits via host cell receptor-mediated endocytosis. Once CDT arrives in the host cell's cytoplasm, CDTa catalyzes the ADP-ribosylation of G-actin leading to degradation of the cytoskeleton and rapid cell death. Although a detailed molecular mechanism for CDT entry and host cell toxicity is not yet fully established, structural and functional resemblances to other binary toxins are described. Additionally, unique conformational assemblies of individual CDT components are highlighted herein to refine our mechanistic understanding of this deadly toxin as is needed to develop effective new therapeutic strategies for treating some of the most hypervirulent and lethal strains of CDT-containing strains of CDI.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Toxinas Bacterianas/antagonistas & inibidores , Clostridioides difficile/patogenicidade , Infecção Hospitalar/tratamento farmacológico , Enterocolite Pseudomembranosa/tratamento farmacológico , Enterotoxinas/antagonistas & inibidores , ADP-Ribosilação/efeitos dos fármacos , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/deficiência , Actinas/genética , Antibacterianos/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sítios de Ligação , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Infecção Hospitalar/metabolismo , Infecção Hospitalar/microbiologia , Infecção Hospitalar/patologia , Endocitose/efeitos dos fármacos , Enterocolite Pseudomembranosa/metabolismo , Enterocolite Pseudomembranosa/microbiologia , Enterocolite Pseudomembranosa/patologia , Enterotoxinas/química , Enterotoxinas/genética , Enterotoxinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína
5.
Molecules ; 26(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450915

RESUMO

S100B, a biomarker of malignant melanoma, interacts with the p53 protein and diminishes its tumor suppressor function, which makes this S100 family member a promising therapeutic target for treating malignant melanoma. However, it is a challenge to design inhibitors that are specific for S100B in melanoma versus other S100-family members that are important for normal cellular activities. For example, S100A1 is most similar in sequence and structure to S100B, and this S100 protein is important for normal skeletal and cardiac muscle function. Therefore, a combination of NMR and computer aided drug design (CADD) was used to initiate the design of specific S100B inhibitors. Fragment-based screening by NMR, also termed "SAR by NMR," is a well-established method, and was used to examine spectral perturbations in 2D [1H, 15N]-HSQC spectra of Ca2+-bound S100B and Ca2+-bound S100A1, side-by-side, and under identical conditions for comparison. Of the 1000 compounds screened, two were found to be specific for binding Ca2+-bound S100A1 and four were found to be specific for Ca2+-bound S100B, respectively. The NMR spectral perturbations observed in these six data sets were then used to model how each of these small molecule fragments showed specificity for one S100 versus the other using a CADD approach termed Site Identification by Ligand Competitive Saturation (SILCS). In summary, the combination of NMR and computational approaches provided insight into how S100A1 versus S100B bind small molecules specifically, which will enable improved drug design efforts to inhibit elevated S100B in melanoma. Such a fragment-based approach can be used generally to initiate the design of specific inhibitors for other highly homologous drug targets.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Subunidade beta da Proteína Ligante de Cálcio S100/antagonistas & inibidores , Proteínas S100/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Proposta de Concorrência , Humanos , Ligantes , Subunidade beta da Proteína Ligante de Cálcio S100/química , Proteínas S100/química , Bibliotecas de Moléculas Pequenas/química
6.
Proc Natl Acad Sci U S A ; 116(35): 17290-17297, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31399543

RESUMO

Second harmonic generation (SHG) is an emergent biophysical method that sensitively measures real-time conformational change of biomolecules in the presence of biological ligands and small molecules. This study describes the successful implementation of SHG as a primary screening platform to identify fragment ligands to oncogenic Kirsten rat sarcoma (KRas). KRas is the most frequently mutated driver of pancreatic, colon, and lung cancers; however, there are few well-characterized small molecule ligands due to a lack of deep binding pockets. Using SHG, we identified a fragment binder to KRasG12D and used 1H 15N transverse relaxation optimized spectroscopy (TROSY) heteronuclear single-quantum coherence (HSQC) NMR to characterize its binding site as a pocket adjacent to the switch 2 region. The unique sensitivity of SHG furthered our study by revealing distinct conformations induced by our hit fragment compared with 4,6-dichloro-2-methyl-3-aminoethyl-indole (DCAI), a Ras ligand previously described to bind the same pocket. This study highlights SHG as a high-throughput screening platform that reveals structural insights in addition to ligand binding.


Assuntos
Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/química , Substituição de Aminoácidos , Sítios de Ligação , Humanos , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Proteínas Proto-Oncogênicas p21(ras)/genética
7.
Biomol NMR Assign ; 13(2): 305-308, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31093909

RESUMO

In mammalian cells, the process of DNA ligation is necessary during DNA replication to create an intact "lagging" strand from a series of smaller Okazaki fragments and to repair DNA strand breaks that arise either due to the direct action of a DNA damaging agent or as a consequence of DNA damage excision during DNA repair. In humans, there are three genes that encode for members of the DNA ligase family (LIG1, LIG3 and LIG4) (Ellenberger and Tomkinson in Ann Rev Biochem 77:313-338. 2008). Although these genes code for polypeptides with overlapping functions in the nucleus, the only mitochondrial DNA ligase (DNA ligase IIIα), which is essential for mitochondrial genome maintenance, is encoded by the LIG3 gene (Lakshmipathy and Campbell in Mol Cell Biol 19:3869-3876, 1999; Zong et al. in Mol Cell 61:667-676, 2016) Because mitochondria play a central and multifunctional role in malignant tumor progression, there is emerging interest in targeting key mitochondrial proteins. Notably, there is evidence in pre-clinical models that inhibitors of DNA ligase IIIα, which is frequently up-regulated in cancer, preferentially target cancer cells via their effect on mitochondria (Zong et al. 2016). Since NMR spectroscopy provides unique capabilities for identifying small molecules that bind specifically to DNA ligase IIIα versus the other DNA ligases), the backbone 1HN, 13C, and 15N NMR resonance assignments were completed for a 222 amino acid DNA-binding domain of human DNA ligase III. These NMR assignments represent a vital first step towards developing DNA ligase III-selective inhibitors.


Assuntos
DNA Ligase Dependente de ATP/química , DNA Ligase Dependente de ATP/metabolismo , DNA/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Humanos , Domínios Proteicos
8.
Methods Mol Biol ; 1929: 291-310, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30710281

RESUMO

S100B is a small, dimeric, calcium-binding protein that is implicated in various diseases, most significantly cancer; therefore, there is interest in identifying S100B inhibitors that may have therapeutic value (Bresnick et al. Nat Rev Cancer 15:96-109, 2015; Chong et al. Curr Med Chem 23:1571-1596). Two fluorescence polarization competition assays (FPCA) are described here for S100B and S100A1 that are amenable to high-throughput screening (HTS) campaigns and can be used to determine the binding affinity (K i) of the inhibitors. One FPCA is used to identify and characterize inhibitors of S100B with the aim of finding new therapeutics, and the other was developed as a counter-screen to avoid inhibitors of S100A1 due to its role in regulating skeletal and cardiac muscle function. Also outlined are methods for expressing and purifying S100B and S100A1 in quantities needed for performing large HTS campaigns.


Assuntos
Proteínas S100/química , Proteínas S100/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Sítios de Ligação/efeitos dos fármacos , Bovinos , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Ratos , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
9.
Bioorg Med Chem Lett ; 28(10): 1949-1953, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29705141

RESUMO

The tumorigenic activity of upregulated Mcl-1 is manifested by binding the BH3 α-helical death domains of opposing Bcl-2 family members, neutralizing them and preventing apoptosis. Accordingly, the development of Mcl-1 inhibitors largely focuses on synthetic BH3 mimicry. The condensation of α-pyridinium methyl ketone salts and α,ß-unsaturated carbonyl compounds in the presence of a source of ammonia, or the Kröhnke pyridine synthesis, is a simple approach to afford highly functionalized pyridines. We adapted this chemistry to rapidly generate low-micromolar inhibitors of Mcl-1 wherein the 2,4,6-substituents were predicted to mimic the i, i + 2 and i + 7 side chains of the BH3 α-helix.


Assuntos
Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Piridinas/química , Sítios de Ligação , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Piridinas/metabolismo , Relação Estrutura-Atividade
10.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 4): 209-214, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368279

RESUMO

The heterogeneous ribonucleoprotein A18 (hnRNP A18) is upregulated in hypoxic regions of various solid tumors and promotes tumor growth via the coordination of mRNA transcripts associated with pro-survival genes. Thus, hnRNP A18 represents an important therapeutic target in tumor cells. Presented here is the first X-ray crystal structure to be reported for the RNA-recognition motif of hnRNP A18. By comparing this structure with those of homologous RNA-binding proteins (i.e. hnRNP A1), three residues on one face of an antiparallel ß-sheet (Arg48, Phe50 and Phe52) and one residue in an unstructured loop (Arg41) were identified as likely to be involved in protein-nucleic acid interactions. This structure helps to serve as a foundation for biophysical studies of this RNA-binding protein and structure-based drug-design efforts for targeting hnRNP A18 in cancer, such as malignant melanoma, where hnRNP A18 levels are elevated and contribute to disease progression.


Assuntos
Ribonucleoproteína Nuclear Heterogênea A1/química , Proteínas de Ligação a RNA/química , RNA/química , Motivos de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Endopeptidases/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína
11.
J Med Chem ; 59(2): 592-608, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26727270

RESUMO

The drug pentamidine inhibits calcium-dependent complex formation with p53 ((Ca)S100B·p53) in malignant melanoma (MM) and restores p53 tumor suppressor activity in vivo. However, off-target effects associated with this drug were problematic in MM patients. Structure-activity relationship (SAR) studies were therefore completed here with 23 pentamidine analogues, and X-ray structures of (Ca)S100B·inhibitor complexes revealed that the C-terminus of S100B adopts two different conformations, with location of Phe87 and Phe88 being the distinguishing feature and termed the "FF-gate". For symmetric pentamidine analogues ((Ca)S100B·5a, (Ca)S100B·6b) a channel between sites 1 and 2 on S100B was occluded by residue Phe88, but for an asymmetric pentamidine analogue ((Ca)S100B·17), this same channel was open. The (Ca)S100B·17 structure illustrates, for the first time, a pentamidine analog capable of binding the "open" form of the "FF-gate" and provides a means to block all three "hot spots" on (Ca)S100B, which will impact next generation (Ca)S100B·p53 inhibitor design.


Assuntos
Subunidade beta da Proteína Ligante de Cálcio S100/antagonistas & inibidores , Subunidade beta da Proteína Ligante de Cálcio S100/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Bovinos , Linhagem Celular Tumoral , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Modelos Moleculares , Pentamidina/análogos & derivados , Pentamidina/química , Pentamidina/farmacologia , Conformação Proteica , Ratos , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/efeitos dos fármacos
12.
BMC Struct Biol ; 13: 31, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24252706

RESUMO

BACKGROUND: S100A4, a member of the S100 family of Ca2+-binding proteins, modulates the motility of both non-transformed and cancer cells by regulating the localization and stability of cellular protrusions. Biochemical studies have demonstrated that S100A4 binds to the C-terminal end of the myosin-IIA heavy chain coiled-coil and disassembles myosin-IIA filaments; however, the mechanism by which S100A4 mediates myosin-IIA depolymerization is not well understood. RESULTS: We determined the X-ray crystal structure of the S100A4Δ8C/MIIA(1908-1923) peptide complex, which showed an asymmetric binding mode for the myosin-IIA peptide across the S100A4 dimer interface. This asymmetric binding mode was confirmed in NMR studies using a spin-labeled myosin-IIA peptide. In addition, our NMR data indicate that S100A4Δ8C binds the MIIA(1908-1923) peptide in an orientation very similar to that observed for wild-type S100A4. Studies of complex formation using a longer, dimeric myosin-IIA construct demonstrated that S100A4 binding dissociates the two myosin-IIA polypeptide chains to form a complex composed of one S100A4 dimer and a single myosin-IIA polypeptide chain. This interaction is mediated, in part, by the instability of the region of the myosin-IIA coiled-coil encompassing the S100A4 binding site. CONCLUSION: The structure of the S100A4/MIIA(1908-1923) peptide complex has revealed the overall architecture of this assembly and the detailed atomic interactions that mediate S100A4 binding to the myosin-IIA heavy chain. These structural studies support the idea that residues 1908-1923 of the myosin-IIA chain heavy represent a core sequence for the S100A4/myosin-IIA complex. In addition, biophysical studies suggest that structural fluctuations within the myosin-IIA coiled-coil may facilitate S100A4 docking onto a single myosin-IIA polypeptide chain.


Assuntos
Miosina não Muscular Tipo IIA/química , Miosina não Muscular Tipo IIA/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo , Sítios de Ligação , Dicroísmo Circular , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Miosinas/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Proteína A4 de Ligação a Cálcio da Família S100
13.
Int J High Throughput Screen ; 2010(1): 109-126, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21132089

RESUMO

S100B is highly over-expressed in many cancers, including malignant melanoma. In such cancers, S100B binds wild-type p53 in a calcium-dependent manner, sequestering it, and promoting its degradation, resulting in the loss of p53-dependent tumor suppression activities. Therefore, S100B inhibitors may be able to restore wild-type p53 levels in certain cancers and provide a useful therapeutic strategy. In this regard, an automated and sensitive fluorescence polarization competition assay (FPCA) was developed and optimized to screen rapidly for lead compounds that bind Ca(2+)-loaded S100B and inhibit S100B target complex formation. A screen of 2000 compounds led to the identification of 26 putative S100B low molecular weight inhibitors. The binding of these small molecules to S100B was confirmed by nuclear magnetic resonance spectroscopy, and additional structural information was provided by x-ray crystal structures of several compounds in complexes with S100B. Notably, many of the identified inhibitors function by chemically modifying Cys84 in protein. These results validate the use of high-throughput FPCA to facilitate the identification of compounds that inhibit S100B. These lead compounds will be the subject of future optimization studies with the ultimate goal of developing a drug with therapeutic activity for the treatment of malignant melanoma and/or other cancers with elevated S100B.

14.
Proc Natl Acad Sci U S A ; 107(19): 8605-10, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20421509

RESUMO

S100A4, a member of the S100 family of Ca(2+)-binding proteins, regulates carcinoma cell motility via interactions with myosin-IIA. Numerous studies indicate that S100A4 is not simply a marker for metastatic disease, but rather has a direct role in metastatic progression. These observations suggest that S100A4 is an excellent target for therapeutic intervention. Using a unique biosensor-based assay, trifluoperazine (TFP) was identified as an inhibitor that disrupts the S100A4/myosin-IIA interaction. To examine the interaction of S100A4 with TFP, we determined the 2.3 A crystal structure of human Ca(2+)-S100A4 bound to TFP. Two TFP molecules bind within the hydrophobic target binding pocket of Ca(2+)-S100A4 with no significant conformational changes observed in the protein upon complex formation. NMR chemical shift perturbations are consistent with the crystal structure and demonstrate that TFP binds to the target binding cleft of S100A4 in solution. Remarkably, TFP binding results in the assembly of five Ca(2+)-S100A4/TFP dimers into a tightly packed pentameric ring. Within each pentamer most of the contacts between S100A4 dimers occurs through the TFP moieties. The Ca(2+)-S100A4/prochlorperazine (PCP) complex exhibits a similar pentameric assembly. Equilibrium sedimentation and cross-linking studies demonstrate the cooperative formation of a similarly sized S100A4/TFP oligomer in solution. Assays examining the ability of TFP to block S100A4-mediated disassembly of myosin-IIA filaments demonstrate that significant inhibition of S100A4 function occurs only at TFP concentrations that promote S100A4 oligomerization. Together these studies support a unique mode of inhibition in which phenothiazines disrupt the S100A4/myosin-IIA interaction by sequestering S100A4 via small molecule-induced oligomerization.


Assuntos
Proclorperazina/farmacologia , Multimerização Proteica/efeitos dos fármacos , Proteínas S100/antagonistas & inibidores , Proteínas S100/química , Trifluoperazina/farmacologia , Cálcio/química , Cálcio/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Miosina não Muscular Tipo IIA/metabolismo , Proclorperazina/química , Proclorperazina/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas S100/metabolismo , Trifluoperazina/química , Trifluoperazina/metabolismo
15.
J Mol Biol ; 396(5): 1227-43, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20053360

RESUMO

Structure-based drug design is underway to inhibit the S100B-p53 interaction as a strategy for treating malignant melanoma. X-ray crystallography was used here to characterize an interaction between Ca(2)(+)-S100B and TRTK-12, a target that binds to the p53-binding site on S100B. The structures of Ca(2+)-S100B (1.5-A resolution) and S100B-Ca(2)(+)-TRTK-12 (2.0-A resolution) determined here indicate that the S100B-Ca(2+)-TRTK-12 complex is dominated by an interaction between Trp7 of TRTK-12 and a hydrophobic binding pocket exposed on Ca(2+)-S100B involving residues in helices 2 and 3 and loop 2. As with an S100B-Ca(2)(+)-p53 peptide complex, TRTK-12 binding to Ca(2+)-S100B was found to increase the protein's Ca(2)(+)-binding affinity. One explanation for this effect was that peptide binding introduced a structural change that increased the number of Ca(2+) ligands and/or improved the Ca(2+) coordination geometry of S100B. This possibility was ruled out when the structures of S100B-Ca(2+)-TRTK-12 and S100B-Ca(2+) were compared and calcium ion coordination by the protein was found to be nearly identical in both EF-hand calcium-binding domains (RMSD=0.19). On the other hand, B-factors for residues in EF2 of Ca(2+)-S100B were found to be significantly lowered with TRTK-12 bound. This result is consistent with NMR (15)N relaxation studies that showed that TRTK-12 binding eliminated dynamic properties observed in Ca(2+)-S100B. Such a loss of protein motion may also provide an explanation for how calcium-ion-binding affinity is increased upon binding a target. Lastly, it follows that any small-molecule inhibitor bound to Ca(2+)-S100B would also have to cause an increase in calcium-ion-binding affinity to be effective therapeutically inside a cell, so these data need to be considered in future drug design studies involving S100B.


Assuntos
Cálcio/metabolismo , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Proteína de Capeamento de Actina CapZ , Bovinos , Cristalografia por Raios X , Polarização de Fluorescência , Humanos , Técnicas In Vitro , Cinética , Modelos Moleculares , Complexos Multiproteicos , Mutagênese Sítio-Dirigida , Fatores de Crescimento Neural/genética , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/genética , Fragmentos de Peptídeos , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/genética , Termodinâmica
16.
Biomol NMR Assign ; 4(1): 5-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19888678

RESUMO

Apurinic/apyrimidinic endonuclease 1 (APE1 or Ref-1) is the major enzyme in mammals for processing abasic sites in DNA. These cytotoxic and mutagenic lesions arise via spontaneous rupture of the base-sugar bond or the removal of damaged bases by a DNA glycosylase. APE1 cleaves the DNA backbone 5' to an abasic site, giving a 3'-OH primer for repair synthesis, and mediates other key repair activities. The DNA repair functions are essential for embryogenesis and cell viability. APE1-deficient cells are hypersensitive to DNA-damaging agents, and APE1 is considered an attractive target for inhibitors that could potentially enhance the efficacy of some anti-cancer agents. To enable an important new method for studying the structure, dynamics, catalytic mechanism, and inhibition of APE1, we assigned the chemical shifts (backbone and (13)C(beta)) of APE1 residues 39-318. We also report a protocol for refolding APE1, which was essential for achieving complete exchange of backbone amide sites for the perdeuterated protein.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Isótopos de Carbono , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Humanos , Modelos Químicos , Ressonância Magnética Nuclear Biomolecular/métodos , Probabilidade , Dobramento de Proteína , Software
17.
Biochemistry ; 48(26): 6202-12, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19469484

RESUMO

Structural studies are part of a rational drug design program aimed at inhibiting the S100B-p53 interaction and restoring wild-type p53 function in malignant melanoma. To this end, structures of three compounds (SBi132, SBi1279, and SBi523) bound to Ca(2+)-S100B were determined by X-ray crystallography at 2.10 A (R(free) = 0.257), 1.98 A (R(free) = 0.281), and 1.90 A (R(free) = 0.228) resolution, respectively. Upon comparison, SBi132, SBi279, and SBi523 were found to bind in distinct locations and orientations within the hydrophobic target binding pocket of Ca(2+)-S100B with minimal structural changes observed for the protein upon complex formation with each compound. Specifically, SBi132 binds nearby residues in loop 2 (His-42, Phe-43, and Leu-44) and helix 4 (Phe-76, Met-79, Ile-80, Ala-83, Cys-84, Phe-87, and Phe-88), whereas SBi523 interacts with a separate site defined by residues within loop 2 (Ser-41, His-42, Phe-43, Leu-44, Glu-45, and Glu-46) and one residue on helix 4 (Phe-87). The SBi279 binding site on Ca(2+)-S100B overlaps the SBi132 and SBi523 sites and contacts residues in both loop 2 (Ser-41, His-42, Phe-43, Leu-44, and Glu-45) and helix 4 (Ile-80, Ala-83, Cys-84, Phe-87, and Phe-88). NMR data, including saturation transfer difference (STD) and (15)N backbone and (13)C side chain chemical shift perturbations, were consistent with the X-ray crystal structures and demonstrated the relevance of all three small molecule-S100B complexes in solution. The discovery that SBi132, SBi279, and SBi523 bind to proximal sites on Ca(2+)-S100B could be useful for the development of a new class of molecule(s) that interacts with one or more of these binding sites simultaneously, thereby yielding novel tight binding inhibitors specific for blocking protein-protein interactions involving S100B.


Assuntos
Fatores de Crescimento Neural/antagonistas & inibidores , Fatores de Crescimento Neural/química , Ressonância Magnética Nuclear Biomolecular , Proteínas S100/antagonistas & inibidores , Proteínas S100/química , Animais , Sítios de Ligação , Bovinos , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Estrutura Molecular , Fatores de Crescimento Neural/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Ratos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
18.
J Biol Chem ; 283(39): 26676-83, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18650434

RESUMO

In heart and skeletal muscle an S100 protein family member, S100A1, binds to the ryanodine receptor (RyR) and promotes Ca(2+) release. Using competition binding assays, we further characterized this system in skeletal muscle and showed that Ca(2+)-S100A1 competes with Ca(2+)-calmodulin (CaM) for the same binding site on RyR1. In addition, the NMR structure was determined for Ca(2+)-S100A1 bound to a peptide derived from this CaM/S100A1 binding domain, a region conserved in RyR1 and RyR2 and termed RyRP12 (residues 3616-3627 in human RyR1). Examination of the S100A1-RyRP12 complex revealed residues of the helical RyRP12 peptide (Lys-3616, Trp-3620, Lys-3622, Leu-3623, Leu-3624, and Lys-3626) that are involved in favorable hydrophobic and electrostatic interactions with Ca(2+)-S100A1. These same residues were shown previously to be important for RyR1 binding to Ca(2+)-CaM. A model for regulating muscle contraction is presented in which Ca(2+)-S100A1 and Ca(2+)-CaM compete directly for the same binding site on the ryanodine receptor.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Modelos Biológicos , Contração Muscular/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas S100/metabolismo , Animais , Sítios de Ligação/fisiologia , Cálcio/química , Calmodulina/química , Calmodulina/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Knockout , Proteínas Musculares/química , Proteínas Musculares/genética , Músculo Esquelético/química , Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Estrutura Terciária de Proteína/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Proteínas S100/química , Proteínas S100/genética , Eletricidade Estática
19.
Biochemistry ; 47(18): 5111-26, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18410126

RESUMO

S100A4, also known as mts1, is a member of the S100 family of Ca2+-binding proteins that is directly involved in tumor invasion and metastasis via interactions with specific protein targets, including nonmuscle myosin-IIA (MIIA). Human S100A4 binds two Ca2+ ions with the typical EF-hand exhibiting an affinity that is nearly 1 order of magnitude tighter than that of the pseudo-EF-hand. To examine how Ca2+ modifies the overall organization and structure of the protein, we determined the 1.7 A crystal structure of the human Ca2+-S100A4. Ca2+ binding induces a large reorientation of helix 3 in the typical EF-hand. This reorganization exposes a hydrophobic cleft that is comprised of residues from the hinge region,helix 3, and helix 4, which afford specific target recognition and binding. The Ca2+-dependent conformational change is required for S100A4 to bind peptide sequences derived from the C-terminal portion of the MIIA rod with submicromolar affinity. In addition, the level of binding of Ca2+ to both EF-hands increases by 1 order of magnitude in the presence of MIIA. NMR spectroscopy studies demonstrate that following titration with a MIIA peptide, the largest chemical shift perturbations and exchange broadening effects occur for residues in the hydrophobic pocket of Ca2+-S100A4. Most of these residues are not exposed in apo-S100A4 and explain the Ca2+ dependence of formation of theS100A4-MIIA complex. These studies provide the foundation for understanding S100A4 target recognition and may support the development of reagents that interfere with S100A4 function.


Assuntos
Cálcio/metabolismo , Miosina não Muscular Tipo IIA/química , Miosina não Muscular Tipo IIA/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo , Cristalografia por Raios X , Dimerização , Humanos , Modelos Moleculares , Músculos/química , Músculos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Quaternária de Proteína , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas S100/genética , Termodinâmica
20.
J Biol Chem ; 283(8): 5046-57, 2008 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-18089560

RESUMO

S100A1, a 21-kDa dimeric Ca2+-binding protein, is an enhancer of cardiac Ca2+ release and contractility and a potential therapeutic agent for the treatment of cardiomyopathy. The role of S100A1 in skeletal muscle has been less well defined. Additionally, the precise molecular mechanism underlying S100A1 modulation of sarcoplasmic reticulum Ca2+ release in striated muscle has not been fully elucidated. Here, utilizing a genetic approach to knock out S100A1, we demonstrate a direct physiological role of S100A1 in excitation-contraction coupling in skeletal muscle. We show that the absence of S100A1 leads to decreased global myoplasmic Ca2+ transients following electrical excitation. Using high speed confocal microscopy, we demonstrate with high temporal resolution depressed activation of sarcoplasmic reticulum Ca2+ release in S100A1-/- muscle fibers. Through competition assays with sarcoplasmic reticulum vesicles and through tryptophan fluorescence experiments, we also identify a novel S100A1-binding site on the cytoplasmic face of the intact ryanodine receptor that is conserved throughout striated muscle and corresponds to a previously identified calmodulin-binding site. Using a 12-mer peptide of this putative binding domain, we demonstrate low micromolar binding affinity to S100A1. NMR spectroscopy reveals this peptide binds within the Ca2+-dependent hydrophobic pocket of S100A1. Taken together, these data suggest that S100A1 plays a significant role in skeletal muscle excitation-contraction coupling, primarily through specific interactions with a conserved binding domain of the ryanodine receptor. This warrants further investigation into the use of S100A1 as a therapeutic target for the treatment of both cardiac and skeletal myopathies.


Assuntos
Calmodulina/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas S100/metabolismo , Animais , Sítios de Ligação/fisiologia , Calmodulina/genética , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Doenças Musculares/tratamento farmacológico , Doenças Musculares/genética , Doenças Musculares/metabolismo , Miocárdio/metabolismo , Ressonância Magnética Nuclear Biomolecular , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Proteínas S100/genética , Proteínas S100/uso terapêutico , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA