Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 56: 102455, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063727

RESUMO

N-glycosylation and disulfide bond formation are two essential steps in protein folding that occur in the endoplasmic reticulum (ER) and reciprocally influence each other. Here, to analyze crosstalk between N-glycosylation and oxidation, we investigated how the protein disulfide oxidase ERO1-alpha affects glycosylation of the angiogenic VEGF121, a key regulator of vascular homeostasis. ERO1 deficiency, while retarding disulfide bond formation in VEGF121, increased utilization of its single N-glycosylation sequon, which lies close to an intra-polypeptide disulfide bridge, and concomitantly slowed its secretion. Unbiased mass-spectrometric analysis revealed interactions between VEGF121 and N-glycosylation pathway proteins in ERO1-knockout (KO), but not wild-type cells. Notably, MAGT1, a thioredoxin-containing component of the post-translational oligosaccharyltransferase complex, was a major hit exclusive to ERO1-deficient cells. Thus, both a reduced rate of formation of disulfide bridges, and the increased trapping potential of MAGT1 may increase N-glycosylation of VEGF121. Extending our investigation to tissues, we observed altered lectin staining of ERO1 KO breast tumor xenografts, implicating ERO1 as a physiologic regulator of protein N-glycosylation. Our study, highlighting the effect of ERO1 loss on N-glycosylation of proteins, is particularly relevant not only to angiogenesis but also to other cancer patho-mechanisms in light of recent findings suggesting a close causal link between alterations in protein glycosylation and cancer development.


Assuntos
Glicoproteínas de Membrana , Fator A de Crescimento do Endotélio Vascular , Dissulfetos/metabolismo , Glicosilação , Humanos , Lectinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Neovascularização Patológica/genética , Oxirredução , Oxirredutases/metabolismo , Dobramento de Proteína , Tiorredoxinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Br J Pharmacol ; 179(23): 5180-5195, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35853086

RESUMO

BACKGROUND AND PURPOSE: Endoplasmic reticulum (ER) stress triggers an adaptive response in tumours which fosters cell survival and resilience to stress. Activation of the ER stress response, through its PERK branch, promotes phosphorylation of the α-subunit of the translation initiation factor eIF2, thereby repressing general protein translation and augmenting the translation of ATF4 with the downstream CHOP transcription factor and the protein disulfide oxidase, ERO1-alpha EXPERIMENTAL APPROACH: Here, we show that ISRIB, a small molecule that inhibits the action of phosphorylated eIF2alpha, activating protein translation, synergistically interacts with the genetic deficiency of protein disulfide oxidase ERO1-alpha, enfeebling breast tumour growth and spread. KEY RESULTS: ISRIB represses the CHOP signal, but does not inhibit ERO1. Mechanistically, ISRIB increases the ER protein load with a marked perturbing effect on ERO1-deficient triple-negative breast cancer cells, which display impaired proteostasis and have adapted to a low client protein load in hypoxia, and ERO1 deficiency impairs VEGF-dependent angiogenesis. ERO1-deficient triple-negative breast cancer xenografts have an augmented ER stress response and its PERK branch. ISRIB acts synergistically with ERO1 deficiency, inhibiting the growth of triple-negative breast cancer xenografts by impairing proliferation and angiogenesis. CONCLUSION AND IMPLICATIONS: These results demonstrate that ISRIB together with ERO1 deficiency synergistically shatter the PERK-dependent adaptive ER stress response, by restarting protein synthesis in the setting of impaired proteostasis, finally promoting tumour cytotoxicity. Our findings suggest two surprising features in breast tumours: ERO1 is not regulated via CHOP under hypoxic conditions, and ISRIB offers a therapeutic option to efficiently inhibit tumour progression in conditions of impaired proteostasis.


Assuntos
Estresse do Retículo Endoplasmático , Glicoproteínas de Membrana , Oxirredutases , Neoplasias de Mama Triplo Negativas , Humanos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Dissulfetos/metabolismo , eIF-2 Quinase/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Neovascularização Patológica/metabolismo , Oxirredutases/metabolismo , Biossíntese de Proteínas , Neoplasias de Mama Triplo Negativas/metabolismo , Resposta a Proteínas não Dobradas , Animais , Glicoproteínas de Membrana/metabolismo
3.
Biochem Pharmacol ; 198: 114973, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35189109

RESUMO

Arsenite, a well-established human carcinogen and toxic compound, promotes the formation of mitochondrial superoxide (mitoO2-) via a Ca2+-dependent mechanism, in which an initial stimulation of the inositol 1, 4, 5-trisphosphate receptor (IP3R) is followed by the activation of the ryanodine receptor (RyR), critical for providing Ca2+ to the mitochondria. We now report that, under the same conditions, arsenite triggers endoplasmic reticulum (ER) stress and a threefold increase in ER oxidoreductin 1α (ERO1 α) levels in proliferating U937 cells. EN460, an inhibitor of ERO1 α, recapitulated all the effects associated with RyR inhibition or downregulation, including prevention of RyR-induced Ca2+ accumulation in mitochondria and the resulting O2-. formation. Quantitatively similar results were obtained in inhibitor studies performed in terminally differentiated wild type C2C12 cells. Moreover, ERO1 α knockout C2C12 myotubes responded to arsenite as their wild type counterpart supplemented with EN460. As a final note, arsenite enhanced the expression of ERO1 α via a mechanism mediated by Ca2+ release from both the IP3R and RyR. We therefore conclude that arsenite activates a positive feedback amplification cycle between Ca2+ levels and ERO1 α in the ER, by which IP3R-dependent Ca2+ induces ERO1 α and ERO1 α promotes Ca2+ release via RyR, thereby amplifying the initial Ca2+ load and causing the mitochondrial accumulation of the cation, critical for mitoO2- formation.


Assuntos
Sinalização do Cálcio , Glicoproteínas de Membrana , Oxirredutases , Canal de Liberação de Cálcio do Receptor de Rianodina , Arsenitos/efeitos adversos , Cálcio/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Células U937
4.
Food Chem Toxicol ; 156: 112523, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34453993

RESUMO

Arsenite induces many critical effects associated with the formation of reactive oxygen species (ROS) through different mechanisms. We focused on Ca2+-dependent mitochondrial superoxide (mitoO2-.) formation and addressed questions on the effects of low concentrations of arsenite on the mobilization of the cation from the endoplasmic reticulum and the resulting mitochondrial accumulation. Using various differentiated and undifferentiated cell types uniquely expressing the inositol-1, 4, 5-triphosphate receptor (IP3R), or both the IP3R and the ryanodine receptor (RyR), we determined that expression of this second Ca2+ channel is an absolute requirement for mitoO2-. formation and for the ensuing mitochondrial dysfunction and downstream apoptosis. In arsenite-treated cells, RyR was recruited after IP3R stimulation and agonist studies provided an indirect indication for a close apposition between RyR and mitochondria. It was also interesting to observe that arsenite fails to promote mitochondrial Ca2+ accumulation, mitoO2-. formation and mitochondrial toxicity in RyR-devoid cells, in which the IP3R is in close contact with the mitochondria. We therefore conclude that low dose arsenite-induced mitoO2- formation, and the resulting mitochondrial dysfunction and toxicity, are prerequisite of cell types expressing the RyR in close apposition with mitochondria.


Assuntos
Arsenitos/toxicidade , Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Superóxidos/metabolismo , Apoptose , Cálcio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
5.
Oncogene ; 40(9): 1721-1736, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33531624

RESUMO

Solid tumors are often characterized by a hypoxic microenvironment which contributes, through the hypoxia-inducible factor HIF-1, to the invasion-metastasis cascade. Endoplasmic reticulum (ER) stress also leads tumor cells to thrive and spread by inducing a transcriptional and translational program, the Unfolded Protein Response (UPR), aimed at restoring ER homeostasis. We studied ERO1 alpha (henceforth ERO1), a protein disulfide oxidase with the tumor-relevant characteristic of being positively regulated by both ER stress and hypoxia. Analysis of the redox secretome indicated that pro-angiogenic HIF-1 targets, were blunted in ERO1-devoid breast cancer cells under hypoxic conditions. ERO1 deficiency reduced tumor cell migration and lung metastases by impinging on tumor angiogenesis, negatively regulating the upstream ATF4/CHOP branch of the UPR and selectively impeding oxidative folding of angiogenic factors, among which VEGF-A. Thus, ERO1 deficiency acted synergistically with the otherwise feeble curative effects of anti-angiogenic therapy in aggressive breast cancer murine models and it might be exploited to treat cancers with pathological HIF-1-dependent angiogenesis. Furthermore, ERO1 levels are higher in the more aggressive basal breast tumors and correlate inversely with the disease- and metastasis-free interval of breast cancer patients. Thus, taking advantage of our in vitro data on ERO1-regulated gene products we identified a gene set associated with ERO1 expression in basal tumors and related to UPR, hypoxia, and angiogenesis, whose levels might be investigated in patients as a hallmark of tumor aggressiveness and orient those with lower levels toward an effective anti-angiogenic therapy.


Assuntos
Neoplasias da Mama/genética , Estresse do Retículo Endoplasmático/genética , Glicoproteínas de Membrana/genética , Neovascularização Patológica/genética , Oxirredutases/genética , Fator 4 Ativador da Transcrição/genética , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Metástase Neoplásica , Neovascularização Patológica/patologia , Fator de Transcrição CHOP/genética , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA