Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 18(11): 2154-2173, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37802073

RESUMO

Our understanding of how STAG proteins contribute to cell identity and disease have largely been studied from the perspective of chromosome topology and protein-coding gene expression. Here, we show that STAG1 is the dominant paralog in mouse embryonic stem cells (mESCs) and is required for pluripotency. mESCs express a wide diversity of naturally occurring Stag1 isoforms, resulting in complex regulation of both the levels of STAG paralogs and the proportion of their unique terminal ends. Skewing the balance of these isoforms impacts cell identity. We define a novel role for STAG1, in particular its N-terminus, in regulating repeat expression, nucleolar integrity, and repression of the two-cell (2C) state to maintain mESC identity. Our results move beyond protein-coding gene regulation via chromatin loops to new roles for STAG1 in nucleolar structure and function, and offer fresh perspectives on how STAG proteins, known to be cancer targets, contribute to cell identity and disease.


Assuntos
Células-Tronco Embrionárias Murinas , Neoplasias , Animais , Camundongos , Diferenciação Celular , Cromatina/genética , Cromatina/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Neoplasias/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
Elife ; 122023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010886

RESUMO

Most studies of cohesin function consider the Stromalin Antigen (STAG/SA) proteins as core complex members given their ubiquitous interaction with the cohesin ring. Here, we provide functional data to support the notion that the SA subunit is not a mere passenger in this structure, but instead plays a key role in the localization of cohesin to diverse biological processes and promotes loading of the complex at these sites. We show that in cells acutely depleted for RAD21, SA proteins remain bound to chromatin, cluster in 3D and interact with CTCF, as well as with a wide range of RNA binding proteins involved in multiple RNA processing mechanisms. Accordingly, SA proteins interact with RNA, and R-loops, even in the absence of cohesin. Our results place SA1 on chromatin upstream of the cohesin ring and reveal a role for SA1 in cohesin loading which is independent of NIPBL, the canonical cohesin loader. We propose that SA1 takes advantage of structural R-loop platforms to link cohesin loading and chromatin structure with diverse functions. Since SA proteins are pan-cancer targets, and R-loops play an increasingly prevalent role in cancer biology, our results have important implications for the mechanistic understanding of SA proteins in cancer and disease.


Assuntos
Estruturas R-Loop , RNA , RNA/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina , Fator de Ligação a CCCTC/metabolismo , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA