Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Cell Res ; 420(2): 113356, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36122768

RESUMO

Actin has important functions in both cytoplasm and nucleus of the cell, with active nuclear transport mechanisms maintaining the cellular actin balance. Nuclear actin levels are subject to regulation during many cellular processes from cell differentiation to cancer. Here we show that nuclear actin levels increase upon differentiation of PC6.3 cells towards neuron-like cells. Photobleaching experiments demonstrate that this increase is due to decreased nuclear export of actin during cell differentiation. Increased nuclear actin levels lead to decreased nuclear localization of MRTF-A, a well-established transcription cofactor of SRF. In line with MRTF-A localization, transcriptomics analysis reveals that MRTF/SRF target gene expression is first transiently activated, but then substantially downregulated during PC6.3 cell differentiation. This study therefore describes a novel cellular context, where regulation of nuclear actin is utilized to tune MRTF/SRF target gene expression during cell differentiation.


Assuntos
Actinas , Transativadores , Actinas/genética , Actinas/metabolismo , Diferenciação Celular/genética , Expressão Gênica , Regulação da Expressão Gênica , Extratos Vegetais , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Transativadores/genética , Transativadores/metabolismo
2.
Sci Rep ; 12(1): 2306, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145145

RESUMO

Myocardin-related transcription factor A (MRTF-A), a coactivator of serum response factor (SRF), regulates the expression of many cytoskeletal genes in response to cytoplasmic and nuclear actin dynamics. Here we describe a novel mechanism to regulate MRTF-A activity within the nucleus by showing that lamina-associated polypeptide 2α (Lap2α), the nucleoplasmic isoform of Lap2, is a direct binding partner of MRTF-A, and required for the efficient expression of MRTF-A/SRF target genes. Mechanistically, Lap2α is not required for MRTF-A nuclear localization, unlike most other MRTF-A regulators, but is required for efficient recruitment of MRTF-A to its target genes. This regulatory step takes place prior to MRTF-A chromatin binding, because Lap2α neither interacts with, nor specifically influences active histone marks on MRTF-A/SRF target genes. Phenotypically, Lap2α is required for serum-induced cell migration, and deregulated MRTF-A activity may also contribute to muscle and proliferation phenotypes associated with loss of Lap2α. Our studies therefore add another regulatory layer to the control of MRTF-A-SRF-mediated gene expression, and broaden the role of Lap2α in transcriptional regulation.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica/genética , Proteínas de Membrana/fisiologia , Transativadores/genética , Transativadores/metabolismo , Actinas/metabolismo , Animais , Movimento Celular/genética , Cromatina , Citoplasma/metabolismo , Citoesqueleto/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Células NIH 3T3 , Ligação Proteica/genética , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Transativadores/fisiologia , Transcrição Gênica/genética
3.
Curr Opin Cell Biol ; 64: 18-24, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32088545

RESUMO

Actin has essential functions both in the cytoplasm and in the nucleus, where it has been linked to key nuclear processes, from transcription to DNA damage response. The multifunctional nature of actin suggests that the cell must contain mechanisms to accurately control the cellular actin balance. Indeed, recent results have demonstrated that nuclear actin levels fluctuate to regulate the transcriptional activity of the cell and that controlled nuclear actin polymerization is required for transcription activation, cell cycle progression, and DNA repair. Intriguingly, aberrant nuclear actin regulation has been observed, for example, in cancer, signifying the importance of this process for cellular homeostasis. This review discussed the latest research on how nuclear actin is regulated, and how this influences actin-dependent nuclear processes.


Assuntos
Actinas/metabolismo , Núcleo Celular/metabolismo , Animais , Regulação da Expressão Gênica , Genoma , Humanos , Polimerização , Transcrição Gênica
4.
Mol Biol Cell ; 25(7): 1111-26, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24523293

RESUMO

The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network.


Assuntos
Citoesqueleto de Actina/metabolismo , Retículo Endoplasmático/metabolismo , Miosina Tipo I/metabolismo , Actinas/metabolismo , Linhagem Celular Tumoral , Humanos , Microtúbulos/metabolismo , Miosina Tipo I/química , Fenótipo , Polimerização , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
5.
Cytoskeleton (Hoboken) ; 70(10): 623-34, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23749625

RESUMO

A number of studies in the last decade have irrevocably promoted actin into a fully fledged member of the nuclear compartment, where it, among other crucial tasks, facilitates transcription and chromatin remodeling. Changes in nuclear actin levels have been linked to different cellular processes: decreased nuclear actin to quiescence and increased nuclear actin to differentiation. Importin 9 and exportin 6 transport factors are responsible for the continuous nucleocytoplasmic shuttling of actin, but the mechanisms, which result in modulated actin levels, have not been characterized. We find that in cells growing under normal growth conditions, the levels of nuclear actin vary considerably from cell to cell. To understand the basis for this, we have extensively quantified several cellular parameters while at the same time recording the import and export rates of green fluorescent protein (GFP)-tagged actin. Surprisingly, our dataset shows that the ratio of nuclear to cytoplasmic fluorescence intensity, but not nuclear shape, size, cytoplasm size, or their ratio, correlates negatively with both import and export rate of actin. This suggests that high-nuclear actin content is maintained by both diminished import and export. The high nuclear actin containing cells still show high mobility of actin, but it is not export competent, suggesting increased binding of actin to nuclear complexes. Creation of such export incompetent actin pool would ensure enough actin is retained in the nucleus and make it available for the various nuclear functions described for actin.


Assuntos
Actinas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Núcleo Celular/metabolismo , Forma do Núcleo Celular , Feminino , Fibroblastos/metabolismo , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Células NIH 3T3 , Transporte Proteico
6.
Nature ; 497(7450): 507-11, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23644458

RESUMO

Laminopathies, caused by mutations in the LMNA gene encoding the nuclear envelope proteins lamins A and C, represent a diverse group of diseases that include Emery-Dreifuss muscular dystrophy (EDMD), dilated cardiomyopathy (DCM), limb-girdle muscular dystrophy, and Hutchison-Gilford progeria syndrome. Most LMNA mutations affect skeletal and cardiac muscle by mechanisms that remain incompletely understood. Loss of structural function and altered interaction of mutant lamins with (tissue-specific) transcription factors have been proposed to explain the tissue-specific phenotypes. Here we report in mice that lamin-A/C-deficient (Lmna(-/-)) and Lmna(N195K/N195K) mutant cells have impaired nuclear translocation and downstream signalling of the mechanosensitive transcription factor megakaryoblastic leukaemia 1 (MKL1), a myocardin family member that is pivotal in cardiac development and function. Altered nucleo-cytoplasmic shuttling of MKL1 was caused by altered actin dynamics in Lmna(-/-) and Lmna(N195K/N195K) mutant cells. Ectopic expression of the nuclear envelope protein emerin, which is mislocalized in Lmna mutant cells and also linked to EDMD and DCM, restored MKL1 nuclear translocation and rescued actin dynamics in mutant cells. These findings present a novel mechanism that could provide insight into the disease aetiology for the cardiac phenotype in many laminopathies, whereby lamin A/C and emerin regulate gene expression through modulation of nuclear and cytoskeletal actin polymerization.


Assuntos
Actinas/metabolismo , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Fator de Resposta Sérica/metabolismo , Transativadores/metabolismo , Actinas/química , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Coração/crescimento & desenvolvimento , Lamina Tipo A/deficiência , Lamina Tipo A/genética , Masculino , Camundongos , Mutação , Miocárdio/metabolismo , Transdução de Sinais
7.
Mol Biol Cell ; 16(2): 649-64, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15548599

RESUMO

Actin-depolymerizing factor (ADF)/cofilins are small actin-binding proteins found in all eukaryotes. In vitro, ADF/cofilins promote actin dynamics by depolymerizing and severing actin filaments. However, whether ADF/cofilins contribute to actin dynamics in cells by disassembling "old" actin filaments or by promoting actin filament assembly through their severing activity is a matter of controversy. Analysis of mammalian ADF/cofilins is further complicated by the presence of multiple isoforms, which may contribute to actin dynamics by different mechanisms. We show that two isoforms, ADF and cofilin-1, are expressed in mouse NIH 3T3, B16F1, and Neuro 2A cells. Depleting cofilin-1 and/or ADF by siRNA leads to an accumulation of F-actin and to an increase in cell size. Cofilin-1 and ADF seem to play overlapping roles in cells, because the knockdown phenotype of either protein could be rescued by overexpression of the other one. Cofilin-1 and ADF knockdown cells also had defects in cell motility and cytokinesis, and these defects were most pronounced when both ADF and cofilin-1 were depleted. Fluorescence recovery after photobleaching analysis and studies with an actin monomer-sequestering drug, latrunculin-A, demonstrated that these phenotypes arose from diminished actin filament depolymerization rates. These data suggest that mammalian ADF and cofilin-1 promote cytoskeletal dynamics by depolymerizing actin filaments and that this activity is critical for several processes such as cytokinesis and cell motility.


Assuntos
Actinas/metabolismo , Fibroblastos/metabolismo , Melanoma Experimental/metabolismo , Proteínas dos Microfilamentos/metabolismo , Actinas/efeitos dos fármacos , Actinas/genética , Animais , Western Blotting , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Movimento Celular/genética , Tamanho Celular , Cofilina 1 , Citocinese/genética , Destrina , Fibronectinas/metabolismo , Fluoresceína-5-Isotiocianato , Recuperação de Fluorescência Após Fotodegradação , Imunofluorescência , Corantes Fluorescentes , Inativação Gênica , Indóis , Cinética , Camundongos , Proteínas dos Microfilamentos/genética , Microscopia de Vídeo , Células NIH 3T3 , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/metabolismo , Fibras de Estresse/metabolismo , Tiazóis/farmacologia , Tiazolidinas
8.
J Biol Chem ; 278(36): 34347-55, 2003 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-12807912

RESUMO

Twinfilin is a highly conserved actin monomer-binding protein that regulates cytoskeletal dynamics in organisms from yeast to mammals. In addition to the previously characterized mammalian twinfilin-1, a second protein with approximately 65% sequence identity to twinfilin-1 exists in mouse and humans. However, previous studies failed to identify any actin binding activity in this protein (Rohwer, A., Kittstein, W., Marks, F., and Gschwendt, M. (1999) Eur. J. Biochem. 263, 518-525). Here we show that this protein, which we named twinfilin-2, is indeed an actin monomer-binding protein. Similar to twinfilin-1, mouse twinfilin-2 binds ADP-G-actin with a higher affinity (KD = 0.12 microM) than ATP-G-actin (KD = 1.96 microM) and efficiently inhibits actin filament assembly in vitro. Both mouse twinfilins inhibit the nucleotide exchange on actin monomers and directly interact with capping protein. Furthermore, the actin interactions of mouse twinfilin-1 and twinfilin-2 are inhibited by phosphatidylinositol (4,5)-bisphosphate. Although biochemically very similar, our Northern blots and in situ hybridizations show that these two proteins display distinct expression patterns. Twinfilin-1 is the major isoform in embryos and in most adult mouse non-muscle cell-types, whereas twinfilin-2 is the predominant isoform of adult heart and skeletal muscles. Studies with isoform-specific antibodies demonstrated that although the two proteins show similar localizations in unstimulated cells, they are regulated by different mechanisms. The small GTPases Rac1 and Cdc42 induce the redistribution of twinfilin-1 to membrane ruffles and cell-cell contacts, respectively, but do not affect the localization of twinfilin-2. Taken together, these data show that mammals have two twinfilin isoforms, which are differentially expressed and regulated through distinct cellular signaling pathways.


Assuntos
Regulação da Expressão Gênica , Proteínas dos Microfilamentos/química , Proteínas Tirosina Quinases , Proteínas de Saccharomyces cerevisiae , Células 3T3 , Actinas/química , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Northern Blotting , Western Blotting , Proteínas de Transporte , Comunicação Celular , Células Cultivadas , Citoesqueleto/metabolismo , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Glutationa Transferase/metabolismo , Humanos , Hibridização In Situ , Cinética , Camundongos , Microscopia de Fluorescência , Dados de Sequência Molecular , Fosfatidilinositol 4,5-Difosfato/química , Plasmídeos/metabolismo , Ligação Proteica , Isoformas de Proteínas , Estrutura Terciária de Proteína , RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Fatores de Tempo , Distribuição Tecidual , Células Tumorais Cultivadas , Proteína cdc42 de Ligação ao GTP/química , Proteínas rac1 de Ligação ao GTP/metabolismo
9.
Mol Biol Cell ; 13(11): 3811-21, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12429826

RESUMO

Twinfilin is a ubiquitous and abundant actin monomer-binding protein that is composed of two ADF-H domains. To elucidate the role of twinfilin in actin dynamics, we examined the interactions of mouse twinfilin and its isolated ADF-H domains with G-actin. Wild-type twinfilin binds ADP-G-actin with higher affinity (K(D) = 0.05 microM) than ATP-G-actin (K(D) = 0.47 microM) under physiological ionic conditions and forms a relatively stable (k(off) = 1.8 s(-1)) complex with ADP-G-actin. Data from native PAGE and size exclusion chromatography coupled with light scattering suggest that twinfilin competes with ADF/cofilin for the high-affinity binding site on actin monomers, although at higher concentrations, twinfilin, cofilin, and actin may also form a ternary complex. By systematic deletion analysis, we show that the actin-binding activity is located entirely in the two ADF-H domains of twinfilin. Individually, these domains compete for the same binding site on actin, but the C-terminal ADF-H domain, which has >10-fold higher affinity for ADP-G-actin, is almost entirely responsible for the ability of twinfilin to increase the amount of monomeric actin in cosedimentation assays. Isolated ADF-H domains associate with ADP-G-actin with rapid second-order kinetics, whereas the association of wild-type twinfilin with G-actin exhibits kinetics consistent with a two-step binding process. These data suggest that the association with an actin monomer induces a first-order conformational change within the twinfilin molecule. On the basis of these results, we propose a kinetic model for the role of twinfilin in actin dynamics and its possible function in cells.


Assuntos
Actinas/metabolismo , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Conformação Proteica , Fatores de Despolimerização de Actina , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Substâncias Macromoleculares , Camundongos , Proteínas dos Microfilamentos/genética , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
10.
Mol Biol Cell ; 13(1): 183-94, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11809832

RESUMO

Actin-depolymerizing factor (ADF)/cofilins are essential regulators of actin filament turnover. Several ADF/cofilin isoforms are found in multicellular organisms, but their biological differences have remained unclear. Herein, we show that three ADF/cofilins exist in mouse and most likely in all other mammalian species. Northern blot and in situ hybridization analyses demonstrate that cofilin-1 is expressed in most cell types of embryos and adult mice. Cofilin-2 is expressed in muscle cells and ADF is restricted to epithelia and endothelia. Although the three mouse ADF/cofilins do not show actin isoform specificity, they all depolymerize platelet actin filaments more efficiently than muscle actin. Furthermore, these ADF/cofilins are biochemically different. The epithelial-specific ADF is the most efficient in turning over actin filaments and promotes a stronger pH-dependent actin filament disassembly than the two other isoforms. The muscle-specific cofilin-2 has a weaker actin filament depolymerization activity and displays a 5-10-fold higher affinity for ATP-actin monomers than cofilin-1 and ADF. In steady-state assays, cofilin-2 also promotes filament assembly rather than disassembly. Taken together, these data suggest that the three biochemically distinct mammalian ADF/cofilin isoforms evolved to fulfill specific requirements for actin filament dynamics in different cell types.


Assuntos
Actinas/metabolismo , Camundongos/genética , Proteínas dos Microfilamentos/metabolismo , Fatores de Despolimerização de Actina , Actinas/química , Actinas/genética , Sequência de Aminoácidos , Animais , Cofilina 1 , Cofilina 2 , Destrina , Endotélio/metabolismo , Células Epiteliais/metabolismo , Evolução Molecular , Imunofluorescência , Células HeLa , Humanos , Hibridização In Situ , Masculino , Camundongos/embriologia , Camundongos/metabolismo , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Modelos Moleculares , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Alinhamento de Sequência , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA