Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1141-1149, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37632553

RESUMO

Ulcerative colitis is an intestinal inflammatory condition characterized by a rise in inflammatory mediator production and oxidative stress. Topiramate is an anticonvulsant agent with effectiveness on a wide range of seizures, which is anti-oxidative. This study aims to examine the protective effects of topiramate on acetic acid-induced ulcerative colitis in rats. Rats were randomly divided into four groups as follows: control, acetic acid, acetic acid + topiramate, and acetic acid + dexamethasone groups. Topiramate (100 mg/kg/day) or dexamethasone (2 mg/kg/day) was administered for six consecutive days, and ulcerative colitis was induced on the first day of the study by transrectal administration of 4% acetic acid. Four hours after the last dose of treatments, animals of each group were sacrificed, and colon tissues were removed for further macroscopic, histopathologic, and biochemical analyses. Treatment with topiramate markedly decreased colonic lesions and macroscopic scores as well as the improvement of histopathologic changes. Topiramate also effectively decreased the levels of malondialdehyde and upregulated the activity of anti-oxidative enzymes, including catalase, superoxide dismutase, and glutathione peroxidase. Our results reveal that the administration of topiramate ameliorates acetic acid-induced colitis in rats via anti-oxidative properties, and further studies may introduce it as an effective therapeutic candidate to decrease ulcerative colitis severity.


Assuntos
Colite Ulcerativa , Colite , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Ácido Acético/efeitos adversos , Ácido Acético/metabolismo , Topiramato/farmacologia , Colo , Glutationa/metabolismo , Colite/induzido quimicamente , Estresse Oxidativo , Dexametasona/farmacologia , Peroxidase/metabolismo
2.
Pestic Biochem Physiol ; 188: 105258, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464363

RESUMO

Phosphine (PH3), from hydrolysis of magnesium, zinc, and aluminum phosphide (AlP), is a rodenticide and insecticide which is used to avoid losses of the agriculture products. However, using of this agent may affect the human health, in a way that poisoning with AlP has a high rate of mortality and morbidities. This study determined the ameliorative effects of metformin (MET) on AlP-induced hepato- and nephro-toxicity in Wistar rats. Male rats were randomly divided into four experimental groups. Group I was the control group received coconut oil by oral gavage, group II was the model group received AlP (12 mg/kg) distributed in coconut oil by oral gavage, group III received MET (200 mg/kg; i.p.), and group IV received MET (200 mg/kg; i.p.) 30 min after intoxication. After 24 h, the serum, liver and kidney tissues were collected for histopathological and biochemical investigations. The levels of kidney function markers, blood urea nitrogen and creatinine, and liver function markers, ALP, AST and ALT, in the plasma were increased significantly followed by AlP intoxication. The results revealed that phosphine causes a significant enhancement of lipid peroxidation, while decreases the activity of superoxide dismutase in both liver and kidney tissues. Furthermore, phosphine significantly induced the up-regulation of TNF-α and phosphorylation of NF-κB in target tissues. Overall, treatment with MET abolished aforementioned alterations resulted by AlP intoxication. Furthermore, histological evaluation indicated a deleterious effect of AlP on the liver and kidney tissues along with marked increase in kidney and liver injury scores, which is mitigated by MET administration. According to our results, although metformin could not bring the changes to the level of the control group, it was indicated that this drug might possess a protective effect against AlP-induced hepato and nephrotoxicity by inhibiting inflammatory responses and oxidative stress.


Assuntos
Metformina , Humanos , Ratos , Animais , Metformina/farmacologia , Óleo de Coco , Ratos Wistar , Fígado
3.
Cell Mol Biol Lett ; 27(1): 6, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35016612

RESUMO

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is associated with a high mortality rate. The majority of deaths in this disease are caused by ARDS (acute respiratory distress syndrome) followed by cytokine storm and coagulation complications. Although alterations in the level of the number of coagulation factors have been detected in samples from COVID-19 patients, the direct molecular mechanism which has been involved in this pathologic process has not been explored yet. The PI3K/AKT signaling pathway is an intracellular pathway which plays a central role in cell survival. Also, in recent years the association between this pathway and coagulopathies has been well clarified. Therefore, based on the evidence on over-activity of the PI3K/AKT signaling pathway in SARS-CoV-2 infection, in the current review, the probable role of this cellular pathway as a therapeutic target for the prevention of coagulation complications in patients with COVID-19 is discussed.


Assuntos
Transtornos da Coagulação Sanguínea/etiologia , Coagulação Sanguínea , COVID-19/complicações , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Transtornos da Coagulação Sanguínea/sangue , Transtornos da Coagulação Sanguínea/metabolismo , COVID-19/sangue , COVID-19/metabolismo , Humanos , Inflamação/sangue , Inflamação/etiologia , Inflamação/metabolismo , Terapia de Alvo Molecular , SARS-CoV-2/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA