Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Magy Onkol ; 61(4): 353-360, 2017 Dec 18.
Artigo em Húngaro | MEDLINE | ID: mdl-29257155

RESUMO

Our aim was to assess the efficacy and adverse effects of cabazitaxel (CBZ), a chemotherapeutic agent that can be administered to patients with metastatic castrate resistant prostate cancer (mCRPC) after docetaxel (DOC) therapy. We retrospectively analyzed data of CBZ received by mCRPC patients in 12 Hungarian oncological centers between 01/2016 and 06/2017. CBZ (25 or 20 mg/m2 q3w) was administered after DOC. Physical and laboratory examinations were performed in every cycle, tumor response was evaluated in every third cycle based on PCWG2 criteria. Adverse effects were evaluated based on CTCAE 4.0. Data of 60 patients were analyzed. CBZ was administered in 2nd and 3rd lines in 31.6% and 46.6%, while in 4th and 5th lines in 15% and 6.6% patients, respectively. Its starting dose was 25 mg/m2 and 20 mg/m2 in 65% and 35% of cases, respectively. The median number of cycles was 5. Progression-free survival and overall survival were 5.52 and 15.77 months, respectively. Survival results were similar in case of DOC-CBZ-ART/alfaradin and DOC-ART/alfaradin-CBZ sequences. Adverse effects were detected in 63,3% of patients. The most common adverse effects were neutropenia, anemia, and diarrhea. Our observations suggest that CBZ, with the appropriate support and chemotherapeutic experience, is well-tolerated and effective therapy of mCRPC after DOC.


Assuntos
Antígeno Prostático Específico/sangue , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/mortalidade , Taxoides/uso terapêutico , Fatores Etários , Idoso , Biópsia por Agulha , Estudos de Coortes , Intervalo Livre de Doença , Docetaxel/efeitos adversos , Docetaxel/uso terapêutico , Humanos , Hungria , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Metástase Neoplásica , Estadiamento de Neoplasias , Segurança do Paciente/estatística & dados numéricos , Prognóstico , Neoplasias de Próstata Resistentes à Castração/patologia , Estudos Retrospectivos , Medição de Risco , Análise de Sobrevida , Taxoides/efeitos adversos , Resultado do Tratamento
2.
Eur J Pharm Sci ; 48(1-2): 307-15, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23201309

RESUMO

Nucleoside analogues, used in HIV-therapy, need to be phosphorylated by cellular enzymes in order to become potential substrates for HIV reverse transcriptase. After incorporation into the viral DNA chain, because of lacking of their 3'-hydroxyl groups, they stop the elongation process and lead to the death of the virus. Phosphorylation of the HIV-drug derivative, tenofovir monophosphate was tested with the recombinant mammalian nucleoside diphosphate kinase (NDPK), 3-phosphoglycerate kinase (PGK), creatine kinase (CK) and pyruvate kinase (PK). Among them, only CK was found to phosphorylate tenofovir monophosphate with a reasonable rate (about 45-fold lower than with its natural substrate, ADP), while PK exhibits even lower, but still detectable activity (about 1000-fold lower compared to the value with ADP). On the other hand, neither NDPK nor PGK has any detectable activity on tenofovir monophosphate. The absence of activity with PGK is surprising, since the drug tenofovir competitively inhibits both CK and PGK towards their nucleotide substrates, with similar inhibitory constants, K(I) of 2.9 and 4.8mM, respectively. Computer modelling (docking) of tenofovir mono- or diphosphate forms to these four kinases suggests that the requirement of large-scale domain closure for functioning (as for PGK) may largely restrict their applicability for phosphorylation/activation of pro-drugs having a structure similar to tenofovir monophosphate.


Assuntos
Adenina/análogos & derivados , Fármacos Anti-HIV/metabolismo , Organofosfonatos/metabolismo , Proteínas Quinases/metabolismo , Adenina/química , Adenina/metabolismo , Difosfato de Adenosina/metabolismo , Fármacos Anti-HIV/química , Sítios de Ligação , Simulação de Acoplamento Molecular , Organofosfonatos/química , Fosforilação , Conformação Proteica , Proteínas Quinases/química , Tenofovir
3.
Biochemistry ; 51(51): 10197-207, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23231058

RESUMO

The exact role of the metal ion, usually Mg(2+), in the catalysis of human 3-phosphoglycerate kinase, a well-studied two-domain enzyme, has not been clarified. Here we have prepared single and double alanine mutants of the potential metal-binding residues, D374 and D218. While all mutations weaken the catalytic interactions with Mg(2+), they surprisingly strengthen binding of both MgADP and MgATP, and the effects are even more pronounced for ADP and ATP. Thermodynamic parameters of binding indicate an increase in the binding entropy as a reason for the strengthening. In agreement with the experimental results, computer-simulated annealing calculations for the complexes of these mutants have supported the mobility of the nucleotide phosphates and, as a consequence, formation of their new interaction(s) within the active site. A similar type of mobility is suggested to be a characteristic feature of the nucleotide site of the wild-type enzyme, too, both in its inactive open conformation and in the active closed conformation. This mobility of the nucleotide phosphates that is regulated by the aspartate side chains of D218 and D374 through the complexing Mg(2+) is suggested to be essential in enzyme function.


Assuntos
Fosfoglicerato Quinase/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Ácido Aspártico/metabolismo , Catálise , Humanos , Magnésio/metabolismo , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo , Conformação Proteica , Termodinâmica
4.
J Biol Chem ; 286(16): 14040-8, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21349853

RESUMO

Phosphoglycerate kinase (PGK) is the enzyme responsible for the first ATP-generating step of glycolysis and has been implicated extensively in oncogenesis and its development. Solution small angle x-ray scattering (SAXS) data, in combination with crystal structures of the enzyme in complex with substrate and product analogues, reveal a new conformation for the resting state of the enzyme and demonstrate the role of substrate binding in the preparation of the enzyme for domain closure. Comparison of the x-ray scattering curves of the enzyme in different states with crystal structures has allowed the complete reaction cycle to be resolved both structurally and temporally. The enzyme appears to spend most of its time in a fully open conformation with short periods of closure and catalysis, thereby allowing the rapid diffusion of substrates and products in and out of the binding sites. Analysis of the open apoenzyme structure, defined through deformable elastic network refinement against the SAXS data, suggests that interactions in a mostly buried hydrophobic region may favor the open conformation. This patch is exposed on domain closure, making the open conformation more thermodynamically stable. Ionic interactions act to maintain the closed conformation to allow catalysis. The short time PGK spends in the closed conformation and its strong tendency to rest in an open conformation imply a spring-loaded release mechanism to regulate domain movement, catalysis, and efficient product release.


Assuntos
Fosfoglicerato Quinase/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Biofísica/métodos , Catálise , Cristalografia por Raios X/métodos , Humanos , Camundongos , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento de Radiação , Homologia de Sequência de Aminoácidos , Termodinâmica
5.
J Am Chem Soc ; 132(18): 6507-16, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20397725

RESUMO

Transition state analogue (TSA) complexes formed by phosphoglycerate kinase (PGK) have been used to test the hypothesis that balancing of charge within the transition state dominates enzyme-catalyzed phosphoryl transfer. High-resolution structures of trifluoromagnesate (MgF(3)(-)) and tetrafluoroaluminate (AlF(4)(-)) complexes of PGK have been determined using X-ray crystallography and (19)F-based NMR methods, revealing the nature of the catalytically relevant state of this archetypal metabolic kinase. Importantly, the side chain of K219, which coordinates the alpha-phosphate group in previous ground state structures, is sequestered into coordinating the metal fluoride, thereby creating a charge environment complementary to the transferring phosphoryl group. In line with the dominance of charge balance in transition state organization, the substitution K219A induces a corresponding reduction in charge in the bound aluminum fluoride species, which changes to a trifluoroaluminate (AlF(3)(0)) complex. The AlF(3)(0) moiety retains the octahedral geometry observed within AlF(4)(-) TSA complexes, which endorses the proposal that some of the widely reported trigonal AlF(3)(0) complexes of phosphoryl transfer enzymes may have been misassigned and in reality contain MgF(3)(-).


Assuntos
Biocatálise , Elétrons , Fosfoglicerato Quinase/química , Fosfoglicerato Quinase/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Compostos de Alumínio/química , Compostos de Alumínio/metabolismo , Fenômenos Biofísicos , Fluoretos/química , Fluoretos/metabolismo , Ácidos Glicéricos/química , Ácidos Glicéricos/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Magnésio/química , Magnésio/metabolismo , Modelos Moleculares , Fosfoglicerato Quinase/genética , Mutação Puntual , Estrutura Terciária de Proteína
6.
FEBS Lett ; 583(22): 3660-4, 2009 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-19854185

RESUMO

The energetic changes accompanying domain closure of 3-phosphoglycerate kinase, a typical hinge-bending enzyme, were assessed. Calorimetric titrations of the enzyme with each substrate, both in the absence and presence of the other one, provide information not only about the energetics of substrate binding, but of the associated conformational changes, including domain closure. Our results suggest that conformational rearrangements in the hinge generated by binding of both substrates provide the main driving force for domain closure overcoming the slightly unfavourable contact interactions between the domains.


Assuntos
Fosfoglicerato Quinase/química , Fosfoglicerato Quinase/metabolismo , Termodinâmica , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Sítios de Ligação , Ácidos Glicéricos/química , Ácidos Glicéricos/metabolismo , Humanos , Cinética , Mutagênese Sítio-Dirigida , Mutação , Fosfoglicerato Quinase/genética , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
7.
Biochemistry ; 48(29): 6998-7008, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19530648

RESUMO

3-Phosphoglycerate kinase (PGK) is a promising candidate for the activation of nucleotide analogues used in antiviral and anticancer therapies. PGK is a key enzyme in glycolysis; it catalyzes the reversible reaction 1,3-bisphosphoglycerate + ADP <--> 3-phosphoglycerate + ATP. Here we explored the catalytic role in human PGK of the highly conserved Lys 215 that has been proposed to be essential for PGK function by a transient and equilibrium kinetic study with the active site mutant K215A. By the stopped-flow method we show that the kinetics of substrate binding and the associated protein isomerization steps are fast and identical for the wild-type PGK and mutant K215A. By the use of a chemical sampling method (rapid quench flow) under multiple and single turnover conditions and in both directions of the reaction, we show that the rate-limiting step with wild-type PGK follows product formation (presumably product release), whereas with the mutant it is the phospho-transfer step itself that is rate-limiting. Mutant K215A has a low inherent phosphotransferase activity, and to explain this, we carried out a molecular modeling study. This suggests that with the mutant the conserved Arg 65 replaces the missing Lys 215 by helping to position the transferable phospho group during the reaction. Molecular dynamics simulations suggest that in the mutant the closed conformation of the enzyme is stabilized by a salt bridge between Asp 218 and Arg 170 rather than Arg 65 in the wild-type PGK.


Assuntos
Lisina/metabolismo , Fosfoglicerato Quinase/metabolismo , Domínio Catalítico , Humanos , Cinética , Modelos Moleculares , Fosfoglicerato Quinase/química
8.
Biochemistry ; 48(5): 1123-34, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19154118

RESUMO

The refolding mechanism of the homodimeric two-domain 3-isopropylmalate dehydrogenase (IPMDH) from the organisms adapted to different temperatures, Thermus thermophilus (Tt), Escherichia coli (Ec), and Vibrio sp. I5 (Vib), is described. In all three cases, instead of a self-template mechanism, the high extent of symmetry and cooperativity in folding of subunits and domains have been concluded from the following experimental findings: The complex time course of refolding, monitored by Trp fluorescence, consists of a fast (the rate constant varies as 16.5, 25.0, and 11.7 min-1 in the order of Tt, Ec, and Vib IPMDHs) and a slow (the rate constants are 0.11, 0.80, and 0.23 min-1 for the three different species) first-order process. However, a burst increase of Trp fluorescence anisotropy to the value of the native states indicates that in all three cases the association of the two polypeptide chains occurs at the beginning of refolding. This dimeric species binds the substrate IPM, but the native-like interactions of the tertiary and quaternary structures are only formed during the slow phase of refolding, accompanied by further increase of protein fluorescence and appearance of FRET between Trp side chain(s) and the bound NADH. Joining the contacting arms of each subunit also takes place exclusively during this slow phase. To monitor refolding of each domain within the intact molecule of T. thermophilus IPMDH, Trp's (located in separate domains) were systematically replaced with Phe's. The refolding processes of the mutants were followed by measuring changes in Trp fluorescence and in FRET between the particular Trp and NADH. The high similarity of time courses (both in biphasicity and in their rates) strongly suggests cooperative folding of the domains during formation of the native three-dimensional structure of IPMDH.


Assuntos
3-Isopropilmalato Desidrogenase/química , Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Dobramento de Proteína , Subunidades Proteicas/química , 3-Isopropilmalato Desidrogenase/genética , 3-Isopropilmalato Desidrogenase/fisiologia , Substituição de Aminoácidos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Dimerização , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Fenilalanina/genética , Estrutura Terciária de Proteína/genética , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Thermus thermophilus/enzimologia , Thermus thermophilus/genética , Thiobacillus/enzimologia , Thiobacillus/genética , Triptofano/genética , Vibrio/enzimologia , Vibrio/genética
9.
Biochemistry ; 47(11): 3462-73, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18288812

RESUMO

L-Nucleosides comprise a new class of antiviral and anticancer agents that are converted in vivo by a cascade of kinases to pharmacologically active nucleoside triphosphates. The last step of the cascade may be catalyzed by 3-phosphoglycerate kinase (PGK), an enzyme that has low specificity for nucleoside diphosphate (NDP): NDP + 1,3-bisphosphoglycerate <--> NTP + 3-phosphoglycerate. Here we compared the kinetics of the formation of the complexes of human PGK with d- and its mirror image l-ADP and the effect of 3-phosphoglycerate (PG) on these by exploiting the fluorescence signal of PGK that occurs upon its interaction with nucleotide substrate. Two types of experiment were carried out: equilibrium (estimation of dissociation constants) and stopped-flow (transient kinetics of the interactions). We show that under our experimental conditions (buffer containing 30% methanol, 4 degrees C) PGK binds d- and l-ADP with similar kinetics. However, whereas PG increased the dissociation rate constant for d-ADP by a factor of 8-which is a kinetic explanation for "substrate antagonism"-PG had little effect on this constant for l-ADP. We explain this difference by a molecular modeling study that showed that the beta-phosphates of d- and l-ADP have different orientations when bound to the active site of human PGK. The difference is unexpected because l-ADP is almost as catalytically competent as d-ADP [ Varga, A. et al. (2008) Biochem. Biophys. Res. Commun. 366, 994-1000].


Assuntos
Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Ácidos Glicéricos/química , Fosfoglicerato Quinase/química , Fosfoglicerato Quinase/metabolismo , Sítios de Ligação , Soluções Tampão , Catálise , Temperatura Baixa , Ácidos Glicéricos/metabolismo , Humanos , Cinética , Metanol , Modelos Moleculares , Estereoisomerismo
10.
Biochem Biophys Res Commun ; 366(4): 994-1000, 2008 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-18096512

RESUMO

l-Nucleoside-analogues, mirror images of the natural d-nucleosides, are a new class of antiviral and anticancer agents. In the cell they have to be phosphorylated to pharmacologically active triphosphate forms, the last step seems to involve human 3-phosphoglycerate kinase (hPGK). Here we present a steady state kinetic and biophysical study of the interaction of the model compound l-MgADP with hPGK. l-MgADP is a good substrate with k(cat) and K(m) values of 685s(-1) and 0.27mM, respectively. Double inhibition studies suggest that l-MgADP binds to the specific adenosine-binding site and protects the conformation of hPGK molecule against heat denaturation, as detected by microcalorimetry. Structural details of the interaction in the enzyme active site are different for the d- and l-enantiomers (e.g. the effect of Mg(2+)), but these differences do not prevent the occurrence of the catalytic cycle, which is accompanied by the hinge-bending domain closure, as indicated by SAXS measurements.


Assuntos
Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Fosfoglicerato Quinase/metabolismo , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/biossíntese , Ácidos Difosfoglicéricos/metabolismo , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Humanos , Cinética , Magnésio/farmacologia , Fosfoglicerato Quinase/antagonistas & inibidores , Fosfoglicerato Quinase/química , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Dobramento de Proteína , Espalhamento a Baixo Ângulo , Estereoisomerismo , Especificidade por Substrato/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo , Difração de Raios X
11.
Biochemistry ; 44(51): 16853-65, 2005 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-16363799

RESUMO

3-Phosphoglycerate kinase (PGK) is a two-domain hinge-bending enzyme. It is still unclear how the geometry of the active site is formed during domain closure and how the catalytic residues are brought into the optimal position for the reaction. Comparison of the three-dimensional structures in various open and closed conformations suggests a large (10 A) movement of Lys 215 during domain closure. This change would be required for direct participation of this side chain in both the catalyzed phospho transfer and the special anion-caused activation. To test the multiple roles of Lys 215, two mutants (K215A and K215R) were constructed from human PGK and characterized in enzyme kinetic and substrate binding studies. For comparison, mutants (R38A and R38K) of the known essential residue, Arg 38, were also produced. Drastic decreases (1500- and 500-fold, respectively), as in the case of R38A, were observed in the kcat values of mutants K215A and K215R, approving the essential catalytic role of Lys 215. In contrast, the R38K mutation caused an only 1.5-fold decrease in activity. This emphasizes the importance of a very precise positioning of Lys 215 in the active site, in addition to its positive charge. The side chain of Lys 215 is also responsible for the substrate and anion-dependent activation, since these properties are abolished upon mutation. Among the kinetic constants mainly the Km values of MgATP and 1,3-BPG are increased (approximately 20- and approximately 8-fold, respectively) in the case of the neutral K215A mutant, evidence of the interaction of Lys 215 with the transferring phospho group in the functioning complex. Weakening of MgATP binding (a moderate increase in Kd), but not of MgADP binding, upon mutation indicates an initial weak interaction of Lys 215 with the gamma-phosphate already in the nonfunctioning open conformation. Thus, during domain closure, Lys 215 possibly moves together with the transferring phosphate; meanwhile, this group is being positioned properly for catalysis.


Assuntos
Lisina/química , Fosfoglicerato Quinase/química , Trifosfato de Adenosina/química , Regulação Alostérica , Sítio Alostérico/genética , Substituição de Aminoácidos , Varredura Diferencial de Calorimetria , Catálise , Domínio Catalítico/genética , Dicroísmo Circular , Difosfatos/química , Ácidos Difosfoglicéricos/química , Estabilidade Enzimática/genética , Ácidos Glicéricos/química , Humanos , Cinética , Lisina/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação/genética , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Compostos de Sulfidrila/química
12.
FEBS J ; 272(8): 1867-85, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15819882

RESUMO

3-phosphoglycerate kinase (PGK) is a typical two-domain hinge-bending enzyme with a well-structured interdomain region. The mechanism of domain-domain interaction and its regulation by substrate binding is not yet fully understood. Here the existence of strong cooperativity between the two domains was demonstrated by following heat transitions of pig muscle and yeast PGKs using differential scanning microcalorimetry and fluorimetry. Two mutants of yeast PGK containing a single tryptophan fluorophore either in the N- or in the C-terminal domain were also studied. The coincidence of the calorimetric and fluorimetric heat transitions in all cases indicated simultaneous, highly cooperative unfolding of the two domains. This cooperativity is preserved in the presence of substrates: 3-phosphoglycerate bound to the N domain or the nucleotide (MgADP, MgATP) bound to the C domain increased the structural stability of the whole molecule. A structural explanation of domain-domain interaction is suggested by analysis of the atomic contacts in 12 different PGK crystal structures. Well-defined backbone and side-chain H bonds, and hydrophobic and electrostatic interactions between side chains of conserved residues are proposed to be responsible for domain-domain communication. Upon binding of each substrate newly formed molecular contacts are identified that firstly explain the order of the increased heat stability in the various binary complexes, and secondly describe the possible route of transmission of the substrate-induced conformational effects from one domain to the other. The largest stability is characteristic of the native ternary complex and is abolished in the case of a chemically modified inactive form of PGK, the domain closure of which was previously shown to be prevented [Sinev MA, Razgulyaev OI, Vas M, Timchenko AA & Ptitsyn OB (1989) Eur J Biochem180, 61-66]. Thus, conformational stability correlates with domain closure that requires simultaneous binding of both substrates.


Assuntos
Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Fosfoglicerato Quinase/química , Fosfoglicerato Quinase/metabolismo , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Calorimetria , Estabilidade Enzimática/efeitos dos fármacos , Fluorometria , Temperatura Alta , Modelos Moleculares , Músculos/enzimologia , Mutação/genética , Fosfoglicerato Quinase/genética , Ligação Proteica/efeitos dos fármacos , Desnaturação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Suínos , Termodinâmica , Triptofano/genética , Triptofano/metabolismo , Leveduras/enzimologia , Leveduras/genética
13.
Proteins ; 55(1): 198-209, 2004 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-14997553

RESUMO

In several crystal structures of 3-phosphoglycerate kinase (PGK), the two domains occupy different relative positions. It is intriguing that the two extreme (open and closed) conformations have never been observed for the enzyme from the same species. Furthermore, in certain cases, these different crystalline conformations represent the enzyme-ligand complex of the same composition, such as the ternary complex containing either the substrate 3-phosphoglycerate (3-PG) and beta,gamma-imido-adenosine-5'-triphosphate (AMP-PNP), an analogue of the substrate MgATP, or 3-PG and the product MgADP. Thus, the protein conformation in the crystal is apparently determined by the origin of the isolated enzyme: PGK from pig muscle has only been crystallized in open conformation, whereas PGK from either Thermotoga maritima or Trypanosoma brucei has only been reported in closed conformations. A systematic analysis of the underlying sequence differences at the crucial hinge regions of the molecule and in the protein-protein contact surfaces in the crystal, in two independent pairs of open and closed states, have revealed that 1) sequential differences around the molecular hinges do not explain the appearance of fundamentally different conformations and 2) the species-specific intermolecular contacts between the nonconserved residues are responsible for stabilizing one conformation over the other in the crystalline state. A direct relationship between the steric position of the contacts in the three-dimensional structure and the conformational state of the protein has been demonstrated.


Assuntos
Fosfoglicerato Quinase/química , Difosfato de Adenosina/química , Adenilil Imidodifosfato/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalização , Ácidos Glicéricos/química , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Fosfoglicerato Quinase/metabolismo , Conformação Proteica , Alinhamento de Sequência , Especificidade da Espécie , Suínos , Thermotoga maritima/enzimologia , Trypanosoma brucei brucei/enzimologia
14.
Biochemistry ; 43(12): 3436-49, 2004 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-15035615

RESUMO

The complexes of pig muscle 3-phosphoglycerate kinase with the substrate MgATP and with the nonsubstrate Mg(2+)-free ATP have been characterized by binding, kinetic, and crystallographic studies. Comparative experiments with ADP and MgADP have also been carried out. In contrast to the less specific and largely ionic binding of Mg(2+)-free ATP and ADP, specific occupation of the adenosine binding pocket by MgATP and MgADP has been revealed by displacement experiments with adenosine and anions, as well as supported by isothermal calorimetric titrations. The Mg(2+)-free nucleotides similarly stabilize the overall protein structure and restrict the conformational flexibility around the reactive thiol groups of helix 13, as observed by differential scanning microcalorimetry and thiol reactivity studies, respectively. The metal complexes, however, behave differently. MgADP, but not MgATP, further increases the conformational stability with respect to its Mg(2+)-free form, which indicates their different modes of binding to the enzyme. Crystal structures of the binary complexes of the enzyme with MgATP and with ATP (2.1 and 1.9 A resolution, respectively) have shown that the orientation and interaction of phosphates of MgATP largely differ not only from those of ATP but also from the previously determined ones of either MgADP [Davies, G. J., Gamblin, S. J., Littlechild, J. A., Dauter, Z., Wilson, K. S., and Watson, H. C. (1994) Acta Crystallogr. D50, 202-209] or the metal complexes of AMP-PNP [May, A., Vas, M., Harlos, K., and Blake, C. C. F. (1996) Proteins 24, 292-303; Auerbach, G., Huber, R., Grattinger, M., Zaiss, K., Schurig, H., Jaenicke, R., and Jacob, U. (1997) Structure 5, 1475-1483] and are more similar to the interactions formed with MgAMP-PCP [Kovári, Z., Flachner, B., Náray-Szabó, G., and Vas, M. (2002) Biochemistry 41, 8796-8806]. Mg(2+) is liganded to both beta- and gamma-phosphates of ATP, while beta-phosphate is linked to the conserved Asp218, i.e., to the N-terminus of helix 8, through a water molecule; the known interactions of either MgADP or the metal complexes of AMP-PNP with the N-terminus of helix 13 and with Asn336 of beta-strand J are absent in the case of MgATP. Fluctuation of MgATP phosphates between two alternative sites has been proposed to facilitate the correct positioning of the mobile side chain of Lys215, and the catalytically competent active site is thereby completed.


Assuntos
Trifosfato de Adenosina/química , Domínio Catalítico , Magnésio/química , Fosfatos/química , Fosfoglicerato Quinase/química , Adenosina/química , Difosfato de Adenosina/química , Trifosfato de Adenosina/análogos & derivados , Animais , Ânions/química , Sítios de Ligação , Calorimetria , Varredura Diferencial de Calorimetria , Cristalografia por Raios X , Cinética , Fosfoglicerato Quinase/antagonistas & inibidores , Dobramento de Proteína , Especificidade por Substrato , Compostos de Sulfidrila/química , Suínos , Titulometria
15.
Biochemistry ; 41(28): 8796-806, 2002 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-12102622

RESUMO

Crystal structure of the ternary complex of pig muscle phosphoglycerate kinase (PGK) with the substrate 3-phosphoglycerate (3-PG) and the Mg(2+) complex of beta,gamma-methylene-adenosine-5'-triphosphate (AMP-PCP), a nonreactive analogue of the nucleotide substrate, MgATP, has been determined by X-ray diffraction at 2.5 A resolution. The overall structure of the protein exhibits an open conformation, similar to that of the previously determined ternary complex of the pig muscle enzyme with beta,gamma-imido-adenosine-5'-triphosphate (AMP-PNP) in place of AMP-PCP (May, Vas, Harlos, and Blake (1996) Proteins 24, 292-303). The orientation and details of interactions of the nucleotide phosphates, however, show marked differences. The beta-phosphate is linked to the conserved Asp 218, i.e., to the N-terminus of helix 8, through the Mg(2+) ion; the previously observed interactions of the metal complex of AMP-PNP or ADP with the conserved Asn 336 and the N-terminus of helix 13 are completely absent. These structural differences are maintained themselves in solution studies. Inhibition and binding experiments show a slightly weaker interaction of PGK with MgAMP-PCP than with MgAMP-PNP: at pH 7.5, the K(d) values are 1.07 +/- 0.18 and 0.41 +/- 0.08 mM, respectively. The difference is further enhanced by 3-PG: the K(d) values are 2.80 +/- 0.66 and 0.68 +/- 0.11 mM, respectively. Thus, the previously observed weakening effect of 3-PG on nucleotide binding (Merli, Szilágyi, Flachner, Rossi, and Vas (2002) Biochemistry 41, 111-119) is more pronounced with MgAMP-PCP. The discordance between substrate analogues also shows up in thiol reactivity studies. In their binary complexes, both ATP analogues protect the fast-reacting thiols of PGK in helix 13 against modification to similar extent. In their ternary complexes, however, which also contain bound 3-PG, the protective effect of MgAMP-PCP, but not of MgAMP-PNP, is largely abolished. This indicates a much smaller effect of MgAMP-PCP on the conformation of helix 13, which is in good correlation with its altered mode of phosphate binding and the ensuing increase in the flexibility of helix 13, as shown by elevated crystallographic B-factors. The possible existence of alternative site(s) for binding of the nucleotide phosphates may have functional relevance.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Músculo Esquelético/enzimologia , Fosfoglicerato Quinase/química , Trifosfato de Adenosina/farmacologia , Animais , Sítios de Ligação , Cristalografia por Raios X/métodos , Cinética , Modelos Moleculares , Fosfoglicerato Quinase/antagonistas & inibidores , Fosfoglicerato Quinase/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Suínos
16.
Biochemistry ; 41(1): 111-9, 2002 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-11772008

RESUMO

Binding constants for the nucleotide substrates were determined in two different crystalline forms of pig muscle 3-phosphoglycerate kinase (PGK): the binary complex with 3-phosphoglycerate (3-PG) in which the two domains are in an open conformation (Harlos, Vas, and Blake (1992) Proteins, 12, 133-144) and the ternary complex with 3-PG and the Mg salt of the ATP analogue, beta,gamma-methyleneadenosine-5'-triphosphate (AMP-PCP), the structure of which is under resolution. Competitive titrations have been performed in the presence of the chromophoric analogue of ATP, 2'3'-O-(2,4,6-trinitrophenyl)ATP (TNP-ATP), similar to those previously carried out in solution, where a weakening of the binding of the nucleotide substrates in the presence of the other substrate, 3-PG, has been observed (Vas, Merli, and Rossi (1994) Biochem. J. 301, 885-891). Here the K(d) values for MgADP were found to be 0.096 +/- 0.021 and 0.045 +/- 0.016 mM, respectively, for the crystals of the binary and ternary complexes. Both K(d) values are significantly smaller than the one obtained in solution in the presence of 3-PG (0.38 +/- 0.05 mM) and are close to the values determined in solution in the absence of 3-PG (0.06 +/- 0.01 mM). Thus, the "substrate antagonism" observed in solution is not present in either of the investigated crystal forms. Further nucleotide binding studies with the solubilized enzyme have shown that 3-PG has no effect on ADP (Mg(2+)-free) binding (K(d) = 0.34 +/- 0.05 mM), while it weakens MgADP binding. Thus, 3-PG abolishes the strengthening effect of the Mg(2+) ion on the binding of ADP. This phenomenon is apparently due to the interaction between the carboxyl group of 3-PG and the protein, since the carboxyl-lacking analogue glycerol-3-phosphate has no detectable effect on MgADP binding. Comparison of the crystallographic data of different PGK binary (with either 3-PG or MgADP) and ternary (with both 3-PG and MgADP) complexes, having open and closed conformations, respectively, provides a possible structural explanation of the substrate antagonism. We suggest that the specific interaction between the 3-PG carboxylic group and a conserved arginine side chain is changed during domain closure, and, through interdomain communication, this change may be transmitted to the site in which Mg(2+) binds the ADP phosphates. This effect is abolished in the crystals of pig muscle PGK, in which lattice forces stabilize the open domain conformation.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Ácidos Glicéricos/metabolismo , Músculos/enzimologia , Fosfoglicerato Quinase/metabolismo , Animais , Sítios de Ligação , Ligação Competitiva , Cristalização , Cristalografia por Raios X , Diálise , Magnésio/metabolismo , Modelos Moleculares , Conformação Molecular , Fosfoglicerato Quinase/antagonistas & inibidores , Fosfoglicerato Quinase/isolamento & purificação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA