Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(10): e23639, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38742798

RESUMO

We tested the hypothesis that the biosensor capability of the endometrium is mediated in part, by the effect of different cargo contained in the extracellular vesicles secreted by the conceptus during the peri-implantation period of pregnancy. We transferred Bos taurus taurus embryos of different origin, in vivo (high developmental potential (IV)), in vitro (intermediate developmental potential (IVF)), or cloned (low developmental potential (NT)), into Bos taurus indicus recipients. Extracellular vesicles (EVs) recovered from Day 16 conceptus-conditioned medium were characterized and their microRNA (miRNA) cargo sequenced alongside RNA sequencing of their respective endometria. There were substantial differences in the endometrial response to in vivo versus in vitro and in vivo versus cloned conceptuses (1153 and 334DEGs respectively) with limited differences between in vitro Vs cloned conceptuses (36 DEGs). The miRNA cargo contained in conceptus-derived EVs was similar between all three groups (426 miRNA in common). Only 8 miRNAs were different between in vivo and cloned conceptuses, while only 6 miRNAs were different between in vivo and in vitro-derived conceptuses. Treatment of endometrial epithelial cells with mimic or inhibitors for miR-128 and miR-1298 changed the proteomic content of target cells (96 and 85, respectively) of which mRNAs are altered in the endometrium in vivo (PLXDC2, COPG1, HSPA12A, MCM5, TBL1XR1, and TTF). In conclusion, we have determined that the biosensor capability of the endometrium is mediated in part, by its response to different EVs miRNA cargo produced by the conceptus during the peri-implantation period of pregnancy.


Assuntos
Endométrio , Vesículas Extracelulares , MicroRNAs , Feminino , Endométrio/metabolismo , Endométrio/citologia , Animais , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Bovinos , Gravidez , Técnicas Biossensoriais/métodos , Implantação do Embrião/fisiologia , Embrião de Mamíferos/metabolismo
2.
Nat Commun ; 14(1): 300, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653366

RESUMO

Historically, ribosomes were viewed as unchanged homogeneous macromolecular machines with no regulatory capacity for mRNA translation. An emerging concept is that heterogeneity of ribosomal composition exists, exerting a regulatory function or specificity in translational control. This is supported by recent discoveries identifying compositionally distinct specialised ribosomes that actively regulate mRNA translation. Viruses lack their own translational machinery and impose high translational demands on the host during replication. We explore the possibility that KSHV manipulates ribosome biogenesis producing specialised ribosomes which preferentially translate viral transcripts. Quantitative proteomic analysis identified changes in the stoichiometry and composition of precursor ribosomal complexes during the switch from latent to lytic replication. We demonstrate the enhanced association of ribosomal biogenesis factors BUD23 and NOC4L, and the KSHV ORF11 protein, with small ribosomal subunit precursor complexes during lytic replication. BUD23 depletion resulted in significantly reduced viral gene expression, culminating in dramatic reduction of infectious virion production. Ribosome profiling demonstrated BUD23 is essential for reduced association of ribosomes with KSHV uORFs in late lytic genes, required for the efficient translation of the downstream coding sequence. Results provide mechanistic insights into KSHV-mediated manipulation of cellular ribosome composition inducing a population of specialised ribosomes facilitating efficient translation of viral mRNAs.


Assuntos
Herpesvirus Humano 8 , Herpesvirus Humano 8/genética , Replicação Viral/genética , Proteômica , Ribossomos/genética , Regulação Viral da Expressão Gênica
3.
RNA ; 27(9): 1082-1101, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34193551

RESUMO

The expression of long noncoding RNAs is highly enriched in the human nervous system. However, the function of neuronal lncRNAs in the cytoplasm and their potential translation remains poorly understood. Here we performed Poly-Ribo-Seq to understand the interaction of lncRNAs with the translation machinery and the functional consequences during neuronal differentiation of human SH-SY5Y cells. We discovered 237 cytoplasmic lncRNAs up-regulated during early neuronal differentiation, 58%-70% of which are associated with polysome translation complexes. Among these polysome-associated lncRNAs, we find 45 small ORFs to be actively translated, 17 specifically upon differentiation. Fifteen of 45 of the translated lncRNA-smORFs exhibit sequence conservation within Hominidea, suggesting they are under strong selective constraint in this clade. The profiling of publicly available data sets revealed that 8/45 of the translated lncRNAs are dynamically expressed during human brain development, and 22/45 are associated with cancers of the central nervous system. One translated lncRNA we discovered is LINC01116, which is induced upon differentiation and contains an 87 codon smORF exhibiting increased ribosome profiling signal upon differentiation. The resulting LINC01116 peptide localizes to neurites. Knockdown of LINC01116 results in a significant reduction of neurite length in differentiated cells, indicating it contributes to neuronal differentiation. Our findings indicate cytoplasmic lncRNAs interact with translation complexes, are a noncanonical source of novel peptides, and contribute to neuronal function and disease. Specifically, we demonstrate a novel functional role for LINC01116 during human neuronal differentiation.


Assuntos
Diferenciação Celular/genética , Neurônios/metabolismo , Polirribossomos/genética , Biossíntese de Proteínas , RNA Longo não Codificante/genética , Sequência de Bases , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Neurônios/citologia , Fases de Leitura Aberta , Polirribossomos/metabolismo , RNA Longo não Codificante/classificação , RNA Longo não Codificante/metabolismo , Análise de Sequência de RNA , Tretinoína/farmacologia
4.
Endocrinology ; 162(6)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33693651

RESUMO

The molecular interactions between the maternal environment and the developing embryo are key for early pregnancy success and are influenced by factors such as maternal metabolic status. Our understanding of the mechanism(s) through which these individual nutritional stressors alter endometrial function and the in utero environment for early pregnancy success is, however, limited. Here we report, for the first time, the use of an endometrium-on-a-chip microfluidics approach to produce a multicellular endometrium in vitro. Isolated endometrial cells (epithelial and stromal) from the uteri of nonpregnant cows in the early luteal phase (Days 4-7) were seeded in the upper chamber of the device (epithelial cells; 4-6 × 104 cells/mL) and stromal cells seeded in the lower chamber (1.5-2 × 104 cells/mL). Exposure of cells to different concentrations of glucose (0.5, 5.0, or 50 mM) or insulin (Vehicle, 1 or 10 ng/mL) was performed at a flow rate of 1 µL/minute for 72 hours. Quantitative differences in the cellular transcriptome and the secreted proteome of in vitro-derived uterine luminal fluid were determined by RNA-sequencing and tandem mass tagging mass spectrometry, respectively. High glucose concentrations altered 21 and 191 protein-coding genes in epithelial and stromal cells, respectively (P < .05), with a dose-dependent quantitative change in the protein secretome (1 and 23 proteins). Altering insulin concentrations resulted in limited transcriptional changes including transcripts for insulin-like binding proteins that were cell specific but altered the quantitative secretion of 196 proteins. These findings highlight 1 potential mechanism by which changes to maternal glucose and insulin alter uterine function.


Assuntos
Endométrio/efeitos dos fármacos , Glucose/farmacologia , Insulina/farmacologia , Dispositivos Lab-On-A-Chip , Animais , Bovinos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Células Cultivadas , Embrião de Mamíferos , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Endométrio/citologia , Endométrio/metabolismo , Feminino , Perfilação da Expressão Gênica/instrumentação , Perfilação da Expressão Gênica/métodos , Gravidez , Cultura Primária de Células/instrumentação , Cultura Primária de Células/métodos , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Proteômica/instrumentação , Proteômica/métodos , Via Secretória/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
5.
J Clin Immunol ; 41(2): 441-457, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33284430

RESUMO

Biallelic mutations in SLC29A3 cause histiocytosis-lymphadenopathy plus syndrome, also known as H syndrome (HS). HS is a complex disorder, with ~ 25% of patients developing autoinflammatory complications consisting of unexplained fevers, persistently elevated inflammatory markers, and unusual lymphadenopathies, with infiltrating CD68+, S100+, and CD1a- histiocytes, resembling the immunophenotype found in Rosai-Dorfman disease (RDD). We investigated the transcriptomic profiles of monocytes, non-activated (M0), classically activated (M1), and alternatively activated macrophages (M2) in two patients with HS, one without autoinflammatory (HS1) and one with autoinflammatory complications (HS2). RNA sequencing revealed a dysregulated transcriptomic profile in both HS patients compared to healthy controls (HC). HS2, when compared to HS1, had several differentially expressed genes, including genes associated with lymphocytic-histiocytic predominance (e.g. NINL) and chronic immune activation (e.g. B2M). The transcriptomic and cytokine profiles of HS patients were comparable to patients with SAID with high levels of TNF. SERPINA1 gene expression was found to be upregulated in all patients studied. Moreover, higher levels of IFNγ were found in the serum of both HS patients when compared to HC. Gene ontology (GO) enrichment analysis of the DEGs in HS patients revealed the terms "type I IFN," "IFNγ signaling pathway," and "immune responses" as the top 3 most significant terms for monocytes. Gene expression analysis of lymph node biopsies from sporadic and H syndrome-associated RDD suggests common underlying pathological process. In conclusion, monocytes and macrophages from both HS patients showed transcriptomic profiles similar to SAIDs and also uniquely upregulated IFNγ signature. These findings may help find better therapeutic options for this rare disorder.


Assuntos
Contratura/genética , Perda Auditiva Neurossensorial/genética , Histiocitose Sinusal/genética , Histiocitose/genética , Transdução de Sinais/genética , Transcriptoma/genética , Adolescente , Adulto , Doenças Autoimunes/genética , Biomarcadores/metabolismo , Citocinas/genética , Feminino , Expressão Gênica/genética , Histiócitos/metabolismo , Humanos , Inflamação/genética , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Proteínas de Transporte de Nucleosídeos/genética , Adulto Jovem
6.
Cells ; 9(6)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526950

RESUMO

Feline coronavirus is a highly contagious virus potentially resulting in feline infectious peritonitis (FIP), while the pathogenesis of FIP remains not well understood, particularly in the events leading to the disease. A predominant theory is that the pathogenic FIPV arises from a mutation, so that it could replicate not only in enterocytes of the intestines but also in monocytes, subsequently systemically transporting the virus. The immune status and genetics of affected cats certainly play an important role in the pathogenesis. Considering the importance of genetics and host immune responses in viral infections, the goal of this study was to elucidate host gene expression in macrophages using RNA sequencing. Macrophages from healthy male cats infected with FIPV 79-1146 ex vivo displayed a differential host gene expression. Despite the virus uptake, aligned viral reads did not increase from 2 to 17 h. The overlap of host gene expression among macrophages from different cats was limited, even though viral transcripts were detected in the cells. Interestingly, some of the downregulated genes in all macrophages were involved in immune signaling, while some upregulated genes common for all cats were found to be inhibiting immune activation. Our results highlight individual host responses playing an important role, consistent with the fact that few cats develop feline infectious peritonitis despite a common presence of enteric FCoV.


Assuntos
Coronavirus Felino/imunologia , Peritonite Infecciosa Felina/imunologia , Peritonite Infecciosa Felina/patologia , Macrófagos/imunologia , Monócitos/imunologia , Animais , Gatos , Linhagem Celular , Coronavirus Felino/genética , Peritonite Infecciosa Felina/virologia , Regulação da Expressão Gênica , Imunidade Inata/genética , Imunidade Inata/imunologia , Macrófagos/citologia , Monócitos/citologia , RNA Viral/isolamento & purificação , Análise de Sequência de RNA , Transcriptoma/genética
7.
Anticancer Drugs ; 28(6): 634-644, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28410270

RESUMO

Adrenocortical tumor (ACT) is a malignancy with a low incidence rate and the current therapy for advanced disease has a limited impact on overall patient survival. A previous study from our group suggested that elevated expression of aurora-A and aurora-B is associated with poor outcome in childhood ACT. Similar results were also reported for adult ACTs. The present in-vitro study shows that AMG 900 inhibits aurora kinases in adrenocortical carcinoma cells. AMG 900 inhibited cell proliferation in NCI-H295 cells as well as in the ACT primary cultures and caused apoptosis in the cell line NCI-H295. Furthermore, it potentialized the mitotane, doxorubicin, and etoposide effects on apoptosis induction and acted synergistically with mitotane and doxorubicin in the inhibition of proliferation. In addition, we found that AMG 900 activated Notch signaling and rendered the cells sensitive to the combination of AMG 900 and Notch signaling inhibition. Altogether, these data show that aurora kinases inhibition using AMG 900 may be an adjuvant therapy to treat patients with invasive or recurrent adrenocortical carcinomas.


Assuntos
Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Carcinoma Adrenocortical/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Ftalazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Neoplasias do Córtex Suprarrenal/enzimologia , Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/enzimologia , Carcinoma Adrenocortical/patologia , Aurora Quinases/antagonistas & inibidores , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Histonas/metabolismo , Humanos , Mitotano/administração & dosagem , Mitotano/farmacologia , Fosforilação/efeitos dos fármacos , Ftalazinas/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA