Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 145: 112411, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34781149

RESUMO

Doxorubicin (DOX) is an effective anticancer drug. However, its use is hampered by the development of very mortal cardiomyopathy. Here, we investigate whether the co-administration of the antidepressant paroxetine (P), known to exert beneficial cardiovascular effects, would provide effective cardioprotection. Experiments were performed in male Wistar rats randomly assigned to control group (0.5 mL/kg 0.9% NaCl, i.v., n = 7), DOX group (DOX 5 mg /kg i.v., n = 23) and DOX+P group (DOX 5 mg/kg, i.v. plus P 10 mg/kg p.o. daily, beginning five days before DOX administration and during the follow-up period, n = 11). Rats' body weight and echocardiography parameters were monitored before and after drug/vehicle administration. Cardiac histology was performed post-mortem, as well as beta1-adrenergic receptor (ß1-AR), beta2-adrenergic receptor (ß2-AR), G protein-coupled receptor kinases type 2 (GRK2), type 3 (GRK3), beta-arrestin 1, and beta-arrestin 2 gene expression using RT-qPCR. DOX-treated rats exhibited bad general condition, adynamia, loss of body weight, and low survival. Echocardiography revealed two phenotypes: cardiomyopathy with left ventricular (LV) hypertrophy (DOX-HCM) and cardiomyopathy with LV dilation (DOX-DCM). In DOX-HCM rats only, there was an increased GRK2 and GRK3 gene expression and synthesis. DOX+P co-treated rats exhibited good general condition, normal spontaneous behaviour, gained weight over time, had increased survival, and preserved LV morphology and contractility. In these rats, gene expression and synthesis of GRK2 and GRK3 were decreased, while ß1-AR and ß2-AR were increased. Present results show for the first time that P effectively reduces DOX-induced cardiotoxicity and enhances survival.


Assuntos
Cardiomiopatias/prevenção & controle , Cardiotoxicidade/prevenção & controle , Doxorrubicina/toxicidade , Paroxetina/farmacologia , Animais , Antibióticos Antineoplásicos/toxicidade , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/mortalidade , Cardiotônicos/farmacologia , Cardiotoxicidade/etiologia , Cardiotoxicidade/mortalidade , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Remodelação Ventricular/efeitos dos fármacos
2.
Toxicol Appl Pharmacol ; 423: 115579, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34015281

RESUMO

Cardiomyopathy resistant to treatment is the most serious adverse effect of doxorubicin (dox). The mechanisms of dox-induced cardiomyopathy (DCM) have been extensively studied in dilated forms of DCM. However, efficient treatment did not emerge. The aim of the present work was to revisit the experimental model of DCM in rats, to define phenotype/s and associate them to the changes in cardiac transcriptome. Male Wistar rats equipped with radiotelemetry device, were randomized in DOX group (5 mg/0,5 mL/kg, IV dox; n = 18) and CONT group (0,5 mL/kg IV saline; n = 6). Echocardiography, autonomic spectral markers and baroreceptor reflex evaluation was performed prior to, and after treatment. Blood samples were collected at the end of experimentation. Cardiac, renal and hepatic tissues were analysed post-mortem by histology. Changes in expression of key cardiac genes affected by dox were assessed by RT-qPCR. Phenotypes were identified by clustering non-redundant features using four different algorithms averaged by evidence accumulation cluster technique. The results emphasize the existence of two major phenotypes of DCM with comparably high mortality rates: phenotype 1 characterized by, left ventricular (LV) dilatation, thinning of LV posterior wall, reduced LV ejection fraction (LVEF) and fractional shortening (LVFS), decreased HR variability (HRV), decreased baroreceptor effectiveness index (BEI) and increased NT-proBNP; and phenotype 2 with LV hypertrophy - increased LV mass, preserved LVEF, LVFS, no changes in HRV and BEI and moderate NT-proBNP increase. Both phenotypes exhibited a genetic shift to a new-born program.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Cardiomiopatias/classificação , Cardiomiopatias/genética , Mapeamento Cromossômico/métodos , Doxorrubicina/toxicidade , Animais , Cardiomiopatias/induzido quimicamente , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar
3.
Toxicol Appl Pharmacol ; 362: 43-51, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30342983

RESUMO

Using comprehensive analysis of heart rate (HRV) and blood pressure (BPV) short-term variability we estimated the time course of changes of autonomic nervous system remodeling in two stages of doxorubicin-induced cardiomyopathy (DCM). We also investigated the level of gene expression of cardiac ß-1 (ß-1AR) and ß-2 (ß-2AR) adrenoceptors. Experiments were performed in adult male Wistar rats equipped with indwelling catheters for BP recording and blood withdrawal. A 15 mg/kg total cumulative dose of doxorubicin was injected i.p. to rats to induce DCM or saline for control (n=18). Rats were assessed for general toxicity, cardiovascular hemodynamic and echocardiography before treatment (n=6), 35 days (DOX35; n=6) and 70 days (DOX70; n=6) post-treatment. HRV was evaluated by spectral analysis, Poincaré plots, sample and approximate entropy. Expression of ß-1AR and ß-2AR mRNA was evaluated by RT-qPCR. Doxorubicin-treated rats exhibited poor general condition and lower survival than saline-treated rats. In DOX35 rats, there were no echocardiography signs of decompensation, no increase in serum cardiac troponins, but there was an increase of HRV and decrease of HR complexity. In these rats typical microscopic signs of cardiotoxicity were seen along with over-expression of ß-1AR mRNA. 70 days post-treatment echocardiography revealed signs of decompensation and serum cardiac troponin T was increased. At this stage BPV decreased. In conclusion, HRV increase matches transient over-expression of cardiac ß-1AR mRNA in compensate stage of DCM while decompensate stage of DCM is characterized by a decrease of BPV and no changes in ß-1AR and ß-2AR gene expression.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Cardiomiopatias/induzido quimicamente , Doxorrubicina/toxicidade , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética , Animais , Pressão Sanguínea/efeitos dos fármacos , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Ecocardiografia , Regulação da Expressão Gênica/efeitos dos fármacos , Coração/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA