Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175444

RESUMO

Immortalization (genetically induced prevention of replicative senescence) is a promising approach to obtain cellular material for cell therapy or for bio-artificial organs aimed at overcoming the problem of donor material shortage. Immortalization is reversed before cells are used in vivo to allow cell differentiation into the mature phenotype and avoid tumorigenic effects of unlimited cell proliferation. However, there is no certainty that the process of de-immortalization is 100% effective and that it does not cause unwanted changes in the cell. In this review, we discuss various approaches to reversible immortalization, emphasizing their advantages and disadvantages in terms of biosafety. We describe the most promising approaches in improving the biosafety of reversibly immortalized cells: CRISPR/Cas9-mediated immortogene insertion, tamoxifen-mediated self-recombination, tools for selection of successfully immortalized cells, using a decellularized extracellular matrix, and ensuring post-transplant safety with the use of suicide genes. The last process may be used as an add-on for previously existing reversible immortalized cell lines.


Assuntos
Contenção de Riscos Biológicos , Telomerase , Linhagem Celular , Diferenciação Celular , Proliferação de Células , Telomerase/metabolismo
2.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829987

RESUMO

The simplification of alveoli leads to various lung pathologies such as bronchopulmonary dysplasia and emphysema. Deep insight into the process of emergence of the secondary septa during development and regeneration after pneumonectomy, and into the contribution of the drivers of alveologenesis and neo-alveolarization is required in an efficient search for therapeutic approaches. In this review, we describe the formation of the gas exchange units of the lung as a multifactorial process, which includes changes in the actomyosin cytoskeleton of alveocytes and myofibroblasts, elastogenesis, retinoic acid signaling, and the contribution of alveolar mesenchymal cells in secondary septation. Knowledge of the mechanistic context of alveologenesis remains incomplete. The characterization of the mechanisms that govern the emergence and depletion of αSMA will allow for an understanding of how the niche of fibroblasts is changing. Taking into account the intense studies that have been performed on the pool of lung mesenchymal cells, we present data on the typing of interstitial fibroblasts and their role in the formation and maintenance of alveoli. On the whole, when identifying cell subpopulations in lung mesenchyme, one has to consider the developmental context, the changing cellular functions, and the lability of gene signatures.


Assuntos
Actomiosina/genética , Pulmão/crescimento & desenvolvimento , Organogênese/genética , Alvéolos Pulmonares/crescimento & desenvolvimento , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patologia , Linhagem da Célula/genética , Citoesqueleto/genética , Enfisema/genética , Enfisema/patologia , Gases/metabolismo , Humanos , Pulmão/patologia , Mesoderma/citologia , Mesoderma/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Tretinoína/metabolismo
3.
Stem Cell Res Ther ; 9(1): 84, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615099

RESUMO

BACKGROUND: Despite the significant progress in the development of skin equivalents (SEs), the problem of noninvasively assessing the quality of the cell components and the collagen structure of living SEs both before and after transplantation remains. Undoubted preference is given to in vivo methods of noninvasive, label-free monitoring of the state of the SEs. Optical bioimaging methods, such as cross-polarization optical coherence tomography (CP OCT), multiphoton tomography (MPT), and fluorescence lifetime imaging microscopy (FLIM), present particular advantages for the visualization of such SEs. METHODS: In this study, we simultaneously applied several visualization techniques for skin model examination. We investigated the structure and quality of dermal equivalents containing dermal papilla (DP) cells and dermal fibroblasts (FBs) using CP OCT, MPT, and FLIM. Both the energy metabolism of the cell components and the structuring of the collagen fibrils were addressed. RESULTS: Based on the data from the fluorescence lifetimes and the contributions of protein-bound NAD(P)H, a bias toward oxidative metabolism was indicated, for the first time, in both the DP cells and FBs on day 14 of SE cultivation. The CP OCT and MPT data also indicated that both DP cells and FBs structured the collagen gel in a similar manner. CONCLUSION: In this study, multimodal label-free imaging of the structure and quality of living dermal equivalents was implemented for the first time with the use CP OCT, MPT, and FLIM of NAD(P)H. Our data suggest that the combination of different imaging techniques provides an integrated approach to data acquisition regarding the structure and quality of dermal equivalents, minimizes the potential disadvantages of using a single method, and provides an ideal information profile for clinical and research applications.


Assuntos
Fibroblastos/citologia , Folículo Piloso/citologia , Células-Tronco Mesenquimais/citologia , Animais , Células Cultivadas , Colágeno/metabolismo , Metabolismo Energético , Fibroblastos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica , Tomografia de Coerência Óptica
4.
Stem Cell Rev Rep ; 8(2): 414-25, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21744048

RESUMO

This is a comprehensive review on label retaining cells (LRC) in epidermal development and homeostasis. The precise in vivo identification and location of epidermal stem cells is a crucial issue in cutaneous biology. We discuss here the following problems: (1) Identification and location of LRC in the interfollicular epithelium and hair follicle; (2) The proliferative potential of LRC and their role in cutaneous homeostasis (3); LRC phenomenon and the Immortal Strand Hypothesis, which suggests an alternative mechanism for retention of genetic information; (4) Significance of LRC studies for development of stem cell concept. Now, it seems evident that LRC are a frequent feature of stem cell niches and revealing highly dormant LRC may be used for identification of stem cell niches in different tissues. LRC were used for screening specific markers of epidermal stem cells. Within a given tissue stem cells have different proliferative characteristics. There are more frequently cycling stem cells which function primarily in homeostasis, while LRC form a reserve of dormant, may be ultimate, stem cells, which are set aside for regeneration of injury or unforeseen need. The authors suggest that LRC dormancy described in Mammalia has much in common with developmental quiescence found in some other animals. For example in C. elegans reproductive system, vulval precursor cells have developmentally programmed cell-cycle arrest in the first larval stage, and then undergo an extended period of quiescence before resuming proliferation. Another example of developmental quiescence is the diapause, a widespread phenomenon exhibited by animals ranging from nematodes to mammals, often occurring at genetically predetermined life history stage.


Assuntos
Pele/citologia , Coloração e Rotulagem , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Biomarcadores/metabolismo , Transformação Celular Neoplásica/patologia , Humanos , Modelos Biológicos
5.
Histochem Cell Biol ; 133(5): 567-76, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20336308

RESUMO

The ability of dermal papilla (DP) cells to induce hair growth was reported in many studies. However, early stages of hair follicle development and signals that govern this process are poorly understood. Therefore, an in vitro model may be a convenient system to study epithelial-mesenchymal interactions and early stages of epidermal morphogenesis, especially in humans. To investigate the role of DP cells in epidermal morphogenesis we modified the method of isolation of DP cells from hair follicle of human scalp and developed the three-dimensional model of epidermal morphogenesis. Isolated DP cells were able to differentiate in adipogenic and osteogenic directions and retained activity of alkaline phosphatase (AP) for seven passages in culture. DP cells were able to induce tubule-like structures in three-dimensional model in vitro and to reorganize collagen matrix. Prolonged cultivation of DP cells has been a big problem because of the loss of hair follicle-inducing ability and growth activity after several passages. To solve this problem we immortalized DP cells by the transfection of the human telomerase reverse transcriptase cDNA (hTERT). Immortalized DP-hTERT cells retained AP activity and demonstrated low ability to osteogenic differentiation. The conditioned medium collected from actively proliferated cells as well as DP-hTERT cells themselves were capable to induce tubulogenesis after prolonged keratinocyte cultivation.


Assuntos
Derme/citologia , Folículo Piloso/citologia , Folículo Piloso/embriologia , Queratinócitos/citologia , Morfogênese/fisiologia , Adipócitos/citologia , Adipócitos/metabolismo , Fosfatase Alcalina/metabolismo , Comunicação Celular/fisiologia , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Linhagem Celular Transformada , Proliferação de Células , Forma Celular , Células Cultivadas , Técnicas de Cocultura , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Humanos , Queratina-10/metabolismo , Queratina-14/metabolismo , Queratina-19/metabolismo , Osteoblastos/metabolismo , Osteonectina/metabolismo , Osteopontina/metabolismo , Telomerase/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA