Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Genes (Basel) ; 13(1)2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-35052391

RESUMO

Nucleolin (NCL/C23; OMIM: 164035) is a major nucleolar protein that plays a critical role in multiple processes, including ribosome assembly and maturation, chromatin decondensation, and pre-rRNA transcription. Due to its diverse functions, nucleolin has frequently been implicated in pathological processes, including cancer and viral infection. We recently identified a de novo frameshifting indel mutation of NCL, p.Gly664Glufs*70, through whole-exome sequencing of autism spectrum disorder trios. Through the transfection of constructs encoding either a wild-type human nucleolin or a mutant nucleolin with the same C-terminal sequence predicted for the autism proband, and by using co-localization with the nucleophosmin (NPM; B23) protein, we have shown that the nucleolin mutation leads to mislocalization of the NCL protein from the nucleolus to the nucleoplasm. Moreover, a construct with a nonsense mutation at the same residue, p.Gly664*, shows a very similar effect on the location of the NCL protein, thus confirming the presence of a predicted nucleolar location signal in this region of the NCL protein. Real-time fluorescence recovery experiments show significant changes in the kinetics and mobility of mutant NCL protein in the nucleoplasm of HEK293Tcells. Several other studies also report de novoNCL mutations in ASD or neurodevelopmental disorders. The altered mislocalization and dynamics of mutant NCL (p.G664Glufs*70/p.G664*) may have relevance to the etiopathlogy of NCL-related ASD and other neurodevelopmental phenotypes.


Assuntos
Transtorno do Espectro Autista/patologia , Nucléolo Celular/metabolismo , Heterozigoto , Mutação , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Transtorno do Espectro Autista/genética , Células HEK293 , Humanos , Masculino , Nucleolina
2.
Genet Med ; 20(3): 294-302, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28726806

RESUMO

PurposeThe purpose of this study was to develop a national program for Canadian diagnostic laboratories to compare DNA-variant interpretations and resolve discordant-variant classifications using the BRCA1 and BRCA2 genes as a case study.MethodsBRCA1 and BRCA2 variant data were uploaded and shared through the Canadian Open Genetics Repository (COGR; http://www.opengenetics.ca). A total of 5,554 variant observations were submitted; classification differences were identified and comparison reports were sent to participating laboratories. Each site had the opportunity to reclassify variants. The data were analyzed before and after the comparison report process to track concordant- or discordant-variant classifications by three different models.ResultsVariant-discordance rates varied by classification model: 38.9% of variants were discordant when using a five-tier model, 26.7% with a three-tier model, and 5.0% with a two-tier model. After the comparison report process, the proportion of discordant variants dropped to 30.7% with the five-tier model, to 14.2% with the three-tier model, and to 0.9% using the two-tier model.ConclusionWe present a Canadian interinstitutional quality improvement program for DNA-variant interpretations. Sharing of variant knowledge by clinical diagnostic laboratories will allow clinicians and patients to make more informed decisions and lead to better patient outcomes.


Assuntos
Confiabilidade dos Dados , Testes Genéticos/normas , Disseminação de Informação , Melhoria de Qualidade , Canadá , Tomada de Decisão Clínica , Bases de Dados Genéticas , Genes BRCA1 , Genes BRCA2 , Aconselhamento Genético , Testes Genéticos/métodos , Variação Genética , Programas Governamentais , Humanos , Reprodutibilidade dos Testes , Fluxo de Trabalho
3.
Psychiatr Genet ; 26(2): 66-73, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26529358

RESUMO

Non-syndromic autosomal recessive intellectual disability (ID) is a genetically heterogeneous disorder with more than 50 mutated genes to date. ID is characterized by deficits in memory skills and language development with difficulty in learning, problem solving, and adaptive behaviors, and affects ∼ 1% of the population. For detection of disease-causing mutations in such a heterogeneous disorder, homozygosity mapping together with exome sequencing is a powerful approach, as almost all known genes can be assessed simultaneously in a high-throughput manner. In this study, a hemizygous c.786C>G:p.Ile262Met in the testis specific protein Y-encoded-like 2 (TSPYL2) gene and a homozygous c.11335G>A:p.Asp3779Asn in the low-density lipoprotein receptor-related protein 2 (LRP2) gene were detected after genome-wide genotyping and exome sequencing in a consanguineous Pakistani family with two boys with mild ID. Mutations in the LRP2 gene have previously been reported in patients with Donnai-Barrow and Stickler syndromes. LRP2 has also been associated with a 2q locus for autism (AUTS5). The TSPYL2 variant is not listed in any single-nucleotide polymorphism databases, and the LRP2 variant was absent in 400 ethnically matched healthy control chromosomes, and is not listed in single-nucleotide polymorphism databases as a common polymorphism. The LRP2 mutation identified here is located in one of the low-density lipoprotein-receptor class A domains, which is a cysteine-rich repeat that plays a central role in mammalian cholesterol metabolism, suggesting that alteration of cholesterol processing pathway can contribute to ID.


Assuntos
Deficiência Intelectual/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteínas Nucleares/genética , Povo Asiático , Proteínas de Ligação a DNA , Exoma , Feminino , Genes Recessivos , Ligação Genética , Homozigoto , Humanos , Masculino , Mutação de Sentido Incorreto , Paquistão , Linhagem
4.
Hum Mol Genet ; 24(20): 5697-710, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26206890

RESUMO

Histamine (HA) acts as a neurotransmitter in the brain, which participates in the regulation of many biological processes including inflammation, gastric acid secretion and neuromodulation. The enzyme histamine N-methyltransferase (HNMT) inactivates HA by transferring a methyl group from S-adenosyl-l-methionine to HA, and is the only well-known pathway for termination of neurotransmission actions of HA in mammalian central nervous system. We performed autozygosity mapping followed by targeted exome sequencing and identified two homozygous HNMT alterations, p.Gly60Asp and p.Leu208Pro, in patients affected with nonsyndromic autosomal recessive intellectual disability from two unrelated consanguineous families of Turkish and Kurdish ancestry, respectively. We verified the complete absence of a functional HNMT in patients using in vitro toxicology assay. Using mutant and wild-type DNA constructs as well as in silico protein modeling, we confirmed that p.Gly60Asp disrupts the enzymatic activity of the protein, and that p.Leu208Pro results in reduced protein stability, resulting in decreased HA inactivation. Our results highlight the importance of inclusion of HNMT for genetic testing of individuals presenting with intellectual disability.


Assuntos
Genes Recessivos , Histamina N-Metiltransferase/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Sequência de Aminoácidos , Domínio Catalítico , Criança , Pré-Escolar , Simulação por Computador , Análise Mutacional de DNA , Exoma , Feminino , Histamina N-Metiltransferase/metabolismo , Humanos , Lactente , Deficiência Intelectual/enzimologia , Iraque , Masculino , Dados de Sequência Molecular , Linhagem , Alinhamento de Sequência , Turquia , População Branca/genética
5.
Brain ; 137(Pt 12): 3160-70, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25260562

RESUMO

Centronuclear myopathies are congenital muscle disorders characterized by type I myofibre predominance and an increased number of muscle fibres with nuclear centralization. The severe neonatal X-linked form is due to mutations in MTM1, autosomal recessive centronuclear myopathy with neonatal or childhood onset results from mutations in BIN1 (amphiphysin 2), and dominant cases were previously associated to mutations in DNM2 (dynamin 2). Our aim was to determine the genetic basis and physiopathology of patients with mild dominant centronuclear myopathy without mutations in DNM2. We hence established and characterized a homogeneous cohort of nine patients from five families with a progressive adult-onset centronuclear myopathy without facial weakness, including three sporadic cases and two families with dominant disease inheritance. All patients had similar histological and ultrastructural features involving type I fibre predominance and hypotrophy, as well as prominent nuclear centralization and clustering. We identified heterozygous BIN1 mutations in all patients and the molecular diagnosis was complemented by functional analyses. Two mutations in the N-terminal amphipathic helix strongly decreased the membrane-deforming properties of amphiphysin 2 and three stop-loss mutations resulted in a stable protein containing 52 supernumerary amino acids. Immunolabelling experiments revealed abnormal central accumulation of dynamin 2, caveolin-3, and the autophagic marker p62, and general membrane alterations of the triad, the sarcolemma, and the basal lamina as potential pathological mechanisms. In conclusion, we identified BIN1 as the second gene for dominant centronuclear myopathy. Our data provide the evidence that specific BIN1 mutations can cause either recessive or dominant centronuclear myopathy and that both disorders involve different pathomechanisms.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Mutação/genética , Miopatias Congênitas Estruturais/genética , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Adulto , Idade de Início , Dinamina II/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo
6.
Hum Genet ; 133(8): 975-84, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24623383

RESUMO

In this study, we have performed autozygosity mapping on a large consanguineous Pakistani family segregating with intellectual disability. We identified two large regions of homozygosity-by-descent (HBD) on 16q12.2-q21 and 16q24.1-q24.3. Whole exome sequencing (WES) was performed on an affected individual from the family, but initially, no obvious mutation was detected. However, three genes within the HBD regions that were not fully captured during the WES were Sanger sequenced and we identified a five base pair deletion (actually six base pairs deleted plus one base pair inserted) in exon 7 of the gene FBXO31. The variant segregated completely in the family, in recessive fashion giving a LOD score of 3.95. This variant leads to a frameshift and a premature stop codon and truncation of the FBXO31 protein, p.(Cys283Asnfs*81). Quantification of mRNA and protein expression suggests that nonsense-mediated mRNA decay also contributes to the loss of FBXO31 protein in affected individuals. FBXO31 functions as a centrosomal E3 ubiquitin ligase, in association with SKP1 and Cullin-1, involved in ubiquitination of proteins targeted for degradation. The FBXO31/SKP1/Cullin1 complex is important for neuronal morphogenesis and axonal identity. FBXO31 also plays a role in dendrite growth and neuronal migration in developing cerebellar cortex. Our finding adds further evidence of the involvement of disruption of the protein ubiquitination pathway in intellectual disability.


Assuntos
Cromossomos Humanos Par 16/genética , Proteínas F-Box/genética , Genes Recessivos , Deficiência Intelectual/genética , Deleção de Sequência , Proteínas Supressoras de Tumor/genética , Western Blotting , Mapeamento Cromossômico , Consanguinidade , Feminino , Mutação da Fase de Leitura/genética , Homozigoto , Humanos , Técnicas Imunoenzimáticas , Deficiência Intelectual/patologia , Masculino , Paquistão , Linhagem , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Neurology ; 81(14): 1205-14, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23975875

RESUMO

OBJECTIVE: To identify causative genes for centronuclear myopathies (CNM), a heterogeneous group of rare inherited muscle disorders that often present in infancy or early life with weakness and hypotonia, using next-generation sequencing of whole exomes and genomes. METHODS: Whole-exome or -genome sequencing was performed in a cohort of 29 unrelated patients with clinicopathologic diagnoses of CNM or related myopathy depleted for cases with mutations of MTM1, DNM2, and BIN1. Immunofluorescence analyses on muscle biopsies, splicing assays, and gel electrophoresis of patient muscle proteins were performed to determine the molecular consequences of mutations of interest. RESULTS: Autosomal recessive compound heterozygous truncating mutations of the titin gene, TTN, were identified in 5 individuals. Biochemical analyses demonstrated increased titin degradation and truncated titin proteins in patient muscles, establishing the impact of the mutations. CONCLUSIONS: Our study identifies truncating TTN mutations as a cause of congenital myopathy that is reported as CNM. Unlike the classic CNM genes that are all involved in excitation-contraction coupling at the triad, TTN encodes the giant sarcomeric protein titin, which forms a myofibrillar backbone for the components of the contractile machinery. This study expands the phenotypic spectrum associated with TTN mutations and indicates that TTN mutation analysis should be considered in cases of possible CNM without mutations in the classic CNM genes.


Assuntos
Conectina/genética , Miopatias Congênitas Estruturais/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Dinamina II/genética , Feminino , Genes Recessivos/genética , Humanos , Masculino , Mutação/genética , Proteínas Nucleares/genética , Fenótipo , Proteínas Tirosina Fosfatases não Receptoras/genética , Método Simples-Cego , Proteínas Supressoras de Tumor/genética , Adulto Jovem
8.
PLoS One ; 8(6): e67527, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23826317

RESUMO

Congenital myopathies are severe muscle disorders affecting adults as well as children in all populations. The diagnosis of congenital myopathies is constrained by strong clinical and genetic heterogeneity. Moreover, the majority of patients present with unspecific histological features, precluding purposive molecular diagnosis and demonstrating the need for an alternative and more efficient diagnostic approach. We used exome sequencing complemented by histological and ultrastructural analysis of muscle biopsies to identify the causative mutations in eight patients with clinically different skeletal muscle pathologies, ranging from a fatal neonatal myopathy to a mild and slowly progressive myopathy with adult onset. We identified RYR1 (ryanodine receptor) mutations in six patients and NEB (nebulin) mutations in two patients. We found novel missense and nonsense mutations, unraveled small insertions/deletions and confirmed their impact on splicing and mRNA/protein stability. Histological and ultrastructural findings of the muscle biopsies of the patients validated the exome sequencing results. We provide the evidence that an integrated strategy combining exome sequencing with clinical and histopathological investigations overcomes the limitations of the individual approaches to allow a fast and efficient diagnosis, accelerating the patient's access to a better healthcare and disease management. This is of particular interest for the diagnosis of congenital myopathies, which involve very large genes like RYR1 and NEB as well as genetic and phenotypic heterogeneity.


Assuntos
Doenças Musculares/congênito , Doenças Musculares/diagnóstico , Adulto , Sequência de Bases , Biópsia , Análise Mutacional de DNA , Exoma/genética , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Músculos/patologia , Músculos/ultraestrutura , Doenças Musculares/genética , Mutação/genética , Linhagem , Fenótipo , Análise de Sequência de DNA
9.
PLoS Genet ; 9(6): e1003430, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23754947

RESUMO

Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1 exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy, and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model available for preclinical trials of potential therapies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Processamento Alternativo/genética , Músculo Esquelético/patologia , Doenças Musculares/genética , Miopatias Congênitas Estruturais/genética , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Animais , Sequência de Bases , Cães , Éxons/genética , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Doenças Musculares/veterinária , Especificidade de Órgãos , Sítios de Splice de RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA