Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Neurochem Res ; 49(6): 1603-1615, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38353895

RESUMO

We aimed to investigate whether the consumption of Egg White Hydrolysate (EWH) acts on nervous system disorders induced by exposure to Cadmium (Cd) in rats. Male Wistar rats were divided into (a) Control (Ct): H2O by gavage for 28 days + H2O (i.p. - 15th - 28th day); (b) Cadmium (Cd): H2O by gavage + CdCl2 - 1 mg/kg/day (i.p. - 15th - 28th day); (c) EWH 14d: EWH 1 g/kg/day by gavage for 14 days + H2O (i.p.- 15th - 28th day); (d) Cd + EWH cotreatment (Cd + EWHco): CdCl2 + EWH for 14 days; (e) EWH 28d: EWH for 28 days; (f) EWHpre + Cd: EWH (1st - 28th day) + CdCl2 (15th - 28th day). At the beginning and the end of treatment, neuromotor performance (Neurological Deficit Scale); motor function (Rota-Rod test); ability to move and explore (Open Field test); thermal sensitivity (Hot Plate test); and state of anxiety (Elevated Maze test) were tested. The antioxidant status in the cerebral cortex and the striatum were biochemically analyzed. Cd induces anxiety, and neuromotor, and thermal sensitivity deficits. EWH consumption prevented anxiety, neuromotor deficits, and alterations in thermal sensitivity, avoiding neuromotor deficits both when the administration was performed before or during Cd exposure. Both modes of administration reduced the levels of reactive species, and the lipid peroxidation increased by Cd and improved the striatum's antioxidant capacity. Pretreatment proved to be beneficial in preventing the reduction of SOD activity in the cortex. EWH could be used as a functional food with antioxidant properties capable of preventing neurological damage induced by Cd.


Assuntos
Cádmio , Clara de Ovo , Estresse Oxidativo , Ratos Wistar , Animais , Masculino , Estresse Oxidativo/efeitos dos fármacos , Cádmio/toxicidade , Clara de Ovo/química , Ratos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Doenças do Sistema Nervoso/induzido quimicamente , Doenças do Sistema Nervoso/prevenção & controle , Doenças do Sistema Nervoso/tratamento farmacológico , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia
2.
Br J Nutr ; 131(11): 1827-1840, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38410884

RESUMO

The purpose of this study was to investigate the effect of an egg white hydrolysate (EWH) to protect white adipose tissue damage from cardiometabolic changes induced by severe hypertension. Male Wistar rats were uninephrectomised and divided: SHAM (weekly subcutaneous vehicle (mineral oil + propylene glycol, 1:1)), SHAM + EWH (subcutaneous vehicle plus EWH via gavage, 1 g/kg per day), DOCA (deoxycorticosterone acetate diluted in vehicle subcutaneously weekly in subsequent doses of 20 mg/kg -1st week, 12 mg/kg - 2­3th week, and 6 mg/kg -4­8th week, respectively, plus 1 % NaCl and 0·2 % KCl in drinking water), and DOCA + EWH. Body weight gain, food and water intake, glucose and lipid metabolism were evaluated. Oxidative stress was assessed by biochemical assay and immunofluorescence for NOX-1, nuclear factor kappa B (NFκB), and caspase-3 in retroperitoneal white adipose tissue (rtWAT). Proinflammatory cytokines (IL-6 and 1ß), CD163+ macrophage infiltration, and immunohistochemistry for TNFα and uncoupling protein-1 were evaluated, as well as histological analysis on rtWAT. Glutathione peroxidase and reductase were also determined in plasma. EWH showed hypocholesterolemic, antioxidant, anti-inflammatory, and anti-apoptotic properties in the arterial hypertension DOCA-salt model. The results demonstrated the presence of functional changes in adipose tissue function by a decrease in macrophage infiltration and in the fluorescence intensity of NFκB, NOX-1, and caspase-3. A reduction of proinflammatory cytokines and restoration of antioxidant enzymatic activity and mitochondrial oxidative damage by reducing uncoupling protein-1 fluorescence intensity were also observed. EWH could be used as a potential alternative therapeutic strategy in the treatment of cardiometabolic complications associated with malignant secondary arterial hypertension.


Assuntos
Tecido Adiposo Branco , Acetato de Desoxicorticosterona , Clara de Ovo , Estresse Oxidativo , Ratos Wistar , Animais , Masculino , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Clara de Ovo/química , Ratos , Hipertensão/metabolismo , Hipertensão/induzido quimicamente , Hidrolisados de Proteína/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/efeitos dos fármacos
3.
Front Physiol ; 14: 1260509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929206

RESUMO

Introduction: Mercury (Hg) is a heavy metal that causes a variety of toxic effects in eukaryotic cells. Previous studies have reported detrimental effects of mercury toxicity in the cardiovascular system. Given the importance of understanding the relationship between Hg and cardiovascular disease, we sought to investigate if the Hg could worsen the myocardial repercussions following ischemic injury. We demonstrated that once mercury toxicity is established, it can influence the outcome of myocardial infarction (MI). Methods: Male Wistar rats received intramuscular injections of either saline (NaCl 0.9%) or mercuric chloride (HgCl2, first dose of 4.6 µg/kg, and subsequent doses of 0.07 µg/kg/day) for 4 weeks. Three weeks post-exposure, we induced transmural infarction in the left ventricle free wall through coronary artery occlusion surgery. Results: ECG recordings obtained from MI groups demonstrated alterations in the rhythm of the heartbeat/heart electrical activity, as expected, including ventricular extrasystoles and ventricular tachycardia. However, the MI group exposed to Hg (MI-Hg) exhibited augmented ventricular extrasystoles and ventricular tachycardia compared to the MI group. Also, Basckó coefficient revealed that the arrhythmic events-after MI-were aggravated by Hg exposure. Discussion: Our results indicate that the significantly increased mortality in MI-Hg groups when compared to MI (21%, MI vs 32%, MI-Hg) is correlated with greater occurrence of arrhythmias. In conclusion, this study further supports the idea that exposure to mercury (Hg) should be recognized as a significant risk factor that exacerbates the impact of cardiac ischemic injury, potentially leading to an increased mortality rate among patients experiencing acute MI.

4.
Clinics ; 78: 100195, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1439924

RESUMO

Abstract Objective: The authors investigated changes in vascular reactivity in rats following pilocarpine-induced status epilepticus. Method: Male Wistar rats weighing between 250g and 300g were used. Status epilepticus was induced using 385 mg/kg i.p. pilocarpine. After 40 days the thoracic aorta was dissected and divided into 4 mm rings and the vascular smooth muscle reactivity to phenylephrine was evaluated. Results: Epilepsy decreased the contractile responses of the aortic rings to phenylephrine (0.1 nM-300 mM). To investigate if this reduction was induced by increasing NO production with/or hydrogen peroxide L-NAME and Catalase were used. L-NAME (N-nitro-L arginine methyl ester) increased vascular reactivity but the contractile response to phenylephrine increased in the epileptic group. Catalase administration decreased the contractile responses only in the rings of rats with epilepsy. Conclusions: Our findings demonstrated for the first time that epilepsy is capable of causing a reduction of vascular reactivity in rat aortas. These results suggest that vascular reactivity reduction is associated with increased production of Nitric Oxide (NO) as an organic attempt to avoid hypertension produced by excessive sympathetic activation.

5.
Metabolites ; 12(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36557226

RESUMO

Aluminum (Al) is a non-essential metal omnipresent in human life and is considered an environmental toxicant. Al increases reactive oxygen production and triggers immune responses, contributing to chronic systemic inflammation development. Here, we have tested whether an egg white hydrolysate (EWH) with potential bioactive properties can protect against changes in reproductive function in rats exposed to long-term Al dietary levels at high and low doses. Male Wistar rats received orally: low aluminum level group-AlCl3 at 8.3 mg/kg b.w. for 60 days with or without EWH (1 g/kg/day); high aluminum level group-AlCl3 at 100 mg/kg b.w. for 42 days with or without EWH (1 g/kg/day). The co-administration of EWH prevented the increased Al deposition surrounding the germinative cells, reducing inflammation and oxidative stress in the reproductive organs. Furthermore, the daily supplementation with EWH maintained sperm production and sperm quality similar to those found in control animals, even after Al exposure at a high dietary contamination level. Altogether, our results suggest that EWH could be used as a protective agent against impairment in the reproductive system produced after long-term exposure to Al at low or high human dietary levels.

6.
Basic Clin Pharmacol Toxicol ; 129(6): 470-485, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34491608

RESUMO

Mercury has been shown to be a significant health risk factor and is positively associated with cardiovascular diseases. Evidence reveals that men are more likely to develop cardiovascular diseases than women during reproductive age. However, the effects of mercury in females remain poorly investigated, despite the finding that female hormones demonstrate a cardioprotective role. In the present study, we evaluated whether chronic mercury chloride exposure could alter blood pressure and vascular function of the female rat aorta. Ten-week-old female Wistar rats were divided into two groups: control (vehicle) and mercury treated (first dose of 4.6 µg/kg, subsequent daily doses of 0.07 µg/kg), im. Mercury treatment did not modify systolic blood pressure (SBP) but increased vascular reactivity due to the reduction of nitric oxide bioavailability associated with the increase in reactive oxygen species from endothelial nitric oxide synthase (eNOS) uncoupling. Furthermore, increased participation of the cyclooxygenase-2 pathway occurred through an imbalance in thromboxane 2 and prostacyclin 2. However, the oestrogen signalling pathway was not altered in either group. These results demonstrated that chronic exposure to mercury in females induced endothelial dysfunction and, consequently, increased aortic vascular reactivity, causing vascular damage to the female rat aorta and representing a risk of cardiovascular diseases.


Assuntos
Ciclo-Oxigenase 2/efeitos dos fármacos , Cloreto de Mercúrio/toxicidade , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Feminino , Cloreto de Mercúrio/administração & dosagem , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/metabolismo
7.
Rev. bras. cir. cardiovasc ; 36(2): 201-211, Mar.-Apr. 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1251093

RESUMO

Abstract Introduction: Heart preservation benefits cardiac performance after operations decreasing morbidity but the contribution of the vascular reactivity has been neglected. Objective: We evaluated whether cardioprotective solutions, Krebs-Henseleit (KH), Bretschneider-HTK (BHTK), St. Thomas No. 1 (STH-1), and Celsior (CEL), affect vascular reactivity. Methods: Aortic rings from Wistar rats were used in two protocols. First, the rings were exposed to BHTK, STH-1 or CEL for 1 hour of hypoxia at 37 °C. Second, the rings were exposed to 10 °C or 20 °C for 1 hour under hypoxia. After treatment, the rings were immersed in KH at 37 °C, endothelial integrity was tested and concentration-response curves to phenylephrine were performed. Results: In the first protocol, the solutions did not damage the endothelium; CEL and BHTK reduced KCl-induced contractions but not STH-1; only CEL and BHTK reduced vascular reactivity; there was a positive correlation between Rmax and KCl concentration. At 20 °C, 1 hour under hypoxia, the solutions produced similar KCl-induced contractions without endothelial damage. CEL, BHTK and STH-1 decreased vascular reactivity. At 10 °C, STH-1 increased reactivity but CEL and BHTK decreased. After 1 hour under hypoxia in CEL or BHTK solutions, reactivity was similar at different temperatures. At 20 °C, endothelial damage after exposure to STH-1 produced more vasoconstriction than CEL and BHTK. However, at 10 °C, endothelial damage after CEL and BHTK exposure elicited more vasoconstriction while STH-1 showed a small vasoconstrictor response, suggesting endothelial damage. Conclusion: STH-1 decreased reactivity at 20 °C and increased at 10 °C. CEL promoted greater endothelial modulation at 10 °C than at 20 °C, while STH-1 promoted higher modulation at 20 °C than at 10 °C. Vascular tone was reduced by CEL and BHTK exposure, also depending on the KCl concentration.


Assuntos
Animais , Ratos , Vasoconstritores/farmacologia , Hipóxia , Fenilefrina , Temperatura , Endotélio Vascular , Ratos Wistar
8.
J Physiol Biochem ; 77(2): 261-272, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33555533

RESUMO

Hypercaloric low-protein diet may lead to a state of malnutrition found in the low-income population of Northeastern Brazil. Although malnutrition during critical periods in the early life is associated with cardiovascular diseases in adulthood, the mechanisms of cardiac dysfunction are still unclear. Here we studied the effects of post-weaning malnutrition due to low protein intake induced by a regional basic diet on the cardiac contractility of young adult rats. In vivo arterial hemodynamic and in vitro myocardial contractility were evaluated in 3-month-old rats. Additionally, protein content of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), total phospholamban (PLB) and phosphorylated at serine 16 (p-Ser(16)-PLB), α2-subunit of the Na(+)/K(+)-ATPase (α2-NKA), and Na(+)/Ca(2+) exchanger (NXC) and in situ production of superoxide anion (O2(-)) were measured in the heart. Blood pressure and heart rate increased in the post-weaning malnourished (PWM) rats. Moreover, malnutrition decreased twitch force and inotropic responses of the isolated cardiac muscle. Protein expression of SERCA, PLB/SERCA, and p-Ser(16)-PLB/PLB ratios and α2-NKA were decreased without changing NCX. The contraction dependent on transsarcolemmal calcium influx was unchanged but responsiveness to Ca(2+) and tetanic peak contractions were impaired in the PWM group. Myocardial O2(-) production was significantly increased by PWM. Our data demonstrated that this hypercaloric low-protein diet in rats is associated with myocardial dysfunction, altered expression of major calcium handling proteins, and increased local oxidative stress. These findings reinforce the attention needed for pediatric care, since chronic malnutrition in early life is related to increased cardiovascular risk in adulthood. Graphical Abstract.


Assuntos
Cálcio/metabolismo , Dieta com Restrição de Proteínas/efeitos adversos , Miocárdio/metabolismo , Desnutrição Proteico-Calórica/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Animais Recém-Nascidos , Pressão Sanguínea/fisiologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Regulação da Expressão Gênica , Frequência Cardíaca/fisiologia , Masculino , Contração Miocárdica/fisiologia , Miocárdio/patologia , Estresse Oxidativo , Desnutrição Proteico-Calórica/etiologia , Desnutrição Proteico-Calórica/genética , Desnutrição Proteico-Calórica/fisiopatologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/genética , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Desmame
9.
Braz J Cardiovasc Surg ; 36(2): 201-211, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33355809

RESUMO

INTRODUCTION: Heart preservation benefits cardiac performance after operations decreasing morbidity but the contribution of the vascular reactivity has been neglected. METHODS: We evaluated whether cardioprotective solutions, Krebs-Henseleit (KH), Bretschneider-HTK (BHTK), St. Thomas No. 1 (STH-1), and Celsior (CEL), affect vascular reactivity. Methods: Aortic rings from Wistar rats were used in two protocols. First, the rings were exposed to BHTK, STH-1 or CEL for 1 hour of hypoxia at 37 °C. Second, the rings were exposed to 10 °C or 20 °C for 1 hour under hypoxia. After treatment, the rings were immersed in KH at 37 °C, endothelial integrity was tested and concentration- response curves to phenylephrine were performed. RESULTS: In the first protocol, the solutions did not damage the endothelium; CEL and BHTK reduced KCl-induced contractions but not STH- 1; only CEL and BHTK reduced vascular reactivity; there was a positive correlation between Rmax and KCl concentration. At 20 °C, 1 hour under hypoxia, the solutions produced similar KCl-induced contractions without endothelial damage. CEL, BHTK and STH-1 decreased vascular reactivity. At 10 °C, STH-1 increased reactivity but CEL and BHTK decreased. After 1 hour under hypoxia in CEL or BHTK solutions, reactivity was similar at different temperatures. At 20 °C, endothelial damage after exposure to STH-1 produced more vasoconstriction than CEL and BHTK. However, at 10 °C, endothelial damage after CEL and BHTK exposure elicited more vasoconstriction while STH-1 showed a small vasoconstrictor response, suggesting endothelial damage. CONCLUSION: STH-1 decreased reactivity at 20 °C and increased at 10 °C. CEL promoted greater endothelial modulation at 10 °C than at 20 °C, while STH-1 promoted higher modulation at 20 °C than at 10 °C. Vascular tone was reduced by CEL and BHTK exposure, also depending on the KCl concentration.


Assuntos
Hipóxia , Vasoconstritores , Animais , Endotélio Vascular , Fenilefrina , Ratos , Ratos Wistar , Temperatura , Vasoconstritores/farmacologia
10.
Front Physiol ; 11: 595767, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329045

RESUMO

Aim: We investigated the antioxidant protective power of egg white hydrolysate (EWH) against the vascular damage induced by mercury chloride (HgCl2) exposure in resistance arteries. Methods: Male Wistar rats received for 60 days: (I) intramuscular injections (i.m.) of saline and tap water by gavage - Untreated group; (II) 4.6 µg/kg of HgCl2 i.m. for the first dose and subsequent doses of 0.07 µg/kg/day and tap water by gavage - HgCl2 group; (III) saline i.m. and 1 g/kg/day of EWH by gavage - EWH group, or (IV) the combination of the HgCl2 i.m. and EWH by gavage - EWH + HgCl2 group. Blood pressure (BP) was indirectly measured and dose-response curves to acetylcholine (ACh), sodium nitroprusside (SNP), and noradrenaline (NE) were assessed in mesenteric resistance arteries (MRA), as in situ production of superoxide anion, nitric oxide (NO) release, vascular reactive oxygen species (ROS), lipid peroxidation, and antioxidant status. Results: Egg white hydrolysate prevented the elevation in BP and the vascular dysfunction after HgCl2 exposure; restored the NO-mediated endothelial modulation and inhibited the oxidative stress and inflammatory pathways induced by HgCl2. Conclusion: Egg white hydrolysate seems to be a useful functional food to prevent HgCl2-induced vascular toxic effects in MRA.

11.
Toxicology ; 443: 152557, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32791093

RESUMO

BACKGROUND: Lead induces endothelial dysfunction and hypertension in humans and animals. Seven-day exposure to a low dose in rats reduces vasocontractile responses and increases nitric oxide (NO) bioavailability. We hypothesized that this occurs by angiotensin II receptors (AT1/AT2) activation. MATERIALS AND RESULTS: Wistar rats were exposed to lead acetate (1 st dose 4 µg/100 g, subsequent dose 0.05 µg/100 g/day i.m., 7 days) or saline (control group). Lead acetate exposure reduced the phenylephrine vascular response. Pre-incubations with NO synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME) or phosphatidylinositol 3-kinase (PI3K) inhibitor (wortmannin) increased the contractile response in aortas from lead-treated rats. Pre-incubation with AT2 antagonist (PD123319) restored normal vascular contraction, and both PD123319 or AT1 antagonist (losartan) impeded the potentiated effects of L-NAME and wortmannin. Reinforcing those findings, increased NO bioavailability was blunted by AT1 and AT2 antagonists without summative effect when co-incubated. Finally, to test whether activation of AT1 could upregulate AT2 to increase NO bioavailability rats were simultaneously exposed to lead acetate and treated with losartan (15 mg/kg/day, orally given). Losartan prevented changes on vascular reactivity and endothelial modulation in lead-exposed group. Moreover, incubation with PD123319 had no more effects in aortic from losartan-treated rats. CONCLUSION: Our results suggest that low-dose lead acetate exposure induces an increase of NO involving mainly AT2 receptor activation and the PI3K/Protein Kinase B (PI3K/Akt) pathway. Additionally, we suggest that AT1 activation plays a role in AT2 upregulation, probably as a protective mechanism. Altogether, these effects might contribute to preserving endothelial function against the harmful effects by lead in the vascular system.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Óxido Nítrico/metabolismo , Compostos Organometálicos/toxicidade , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Masculino , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
12.
Toxicol Lett ; 333: 80-89, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32738273

RESUMO

Exposure to high concentrations of cadmium (Cd), widely used in many industries and found in air, food and contaminated water, is not uncommon. Cd damages the cardiovascular system, but the vascular mechanisms involved are not fully understood. This study investigated the mechanisms involved in cardiovascular damage after exposure to high Cd concentrations. Three-month-old male Wistar rats were treated intraperitoneally for 14 days with distilled water (Untreated group) or 1 mg/kg cadmium chloride (Cd group). We investigated the systolic blood pressure (SBP) and vascular reactivity of mesenteric resistance arteries (MRA) and the aorta by analysing contractile and relaxation responses in the absence and presence of the endothelium; we also evaluated pathways involved in vascular tone regulation. Superoxide anion production, COX-2 protein expression and in situ detection of COX-2, AT-1, and NOX-1 were evaluated. Oxidative status, creatinine level and angiotensin-converting enzyme (ACE) activity in plasma were also evaluated. Fourteen-day exposure to a high Cd concentration induced hypertension associated with vascular dysfunction in MRA and the aorta. In both vessels, there was increased participation of cyclooxygenase 2 (COX2), angiotensin II type 1 (AT1) receptor and NOX1. MRA also presented endothelial dysfunction, denoted by impaired acetylcholine-mediated relaxation. All vascular changes were accompanied by increased reactive oxygen species production and COX2, NOX1 and AT1 receptor expression in vascular tissue. Overall, high Cd concentrations induced cardiovascular damage: hypertension, endothelial dysfunction and vascular damage in conductance and resistance arteries, NADPH oxidase, renin-angiotensin system and COX2 pathway activation.


Assuntos
Cloreto de Cádmio/toxicidade , Ciclo-Oxigenase 2/metabolismo , Endotélio Vascular/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Hipertensão/induzido quimicamente , NADPH Oxidases/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Animais , Aorta/efeitos dos fármacos , Aorta/enzimologia , Pressão Sanguínea/efeitos dos fármacos , Cloreto de Cádmio/sangue , Relação Dose-Resposta a Droga , Endotélio Vascular/enzimologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Poluentes Ambientais/sangue , Hipertensão/enzimologia , Hipertensão/patologia , Hipertensão/fisiopatologia , Injeções Intraperitoneais , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Transdução de Sinais , Vasoconstrição/efeitos dos fármacos
13.
Food Chem Toxicol ; 133: 110799, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31493463

RESUMO

Aluminum (Al) is toxic for humans and animals. Here, we have tested the potential for Egg White Hydrolysate (EWH) to protect against cardiovascular changes in rats exposed to both high and low dietary levels of Al. Indeed, EWH has been previously shown to improve cardio metabolic dysfunctions induced by chronic exposure to heavy metals. Male Wistar rats received orally: Group 1) Low aluminum level (AlCl3 at a dose of 8.3 mg/kg b.w. during 60 days) with or without EWH treatment (1 g/kg/day); Group 2) High aluminum level (AlCl3 at a dose of 100 mg/kg b.w. during 42 days) with or without EWH treatment. After Al treatment, rats co-treated with EWH did not show vascular dysfunction or increased blood pressure as was observed in non EWH-cotreated animals. Indeed, co-treatment with EWH prevented the following effects observed in both aorta and mesenteric arteries: the increased vascular responses to phenylephrine (Phe), the decreased ACh-induced relaxation, the reduction on endothelial modulation of vasoconstrictor responses and the nitric oxide bioavailability, as well as the increased reactive oxygen species production from NAD(P)H oxidase. Altogether, our results suggest that EWH could be used as a protective agent against the harmful vascular effects after long term exposure to Al.


Assuntos
Antioxidantes/farmacologia , Proteínas do Ovo/farmacologia , Clara de Ovo/química , Hidrolisados de Proteína/farmacologia , Doenças Vasculares/prevenção & controle , Alumínio , Animais , Antioxidantes/química , Ciclo-Oxigenase 2/metabolismo , Proteínas do Ovo/química , Endotélio Vascular/efeitos dos fármacos , Hidrólise , Masculino , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Tromboxano-A Sintase/metabolismo , Doenças Vasculares/induzido quimicamente , Vasoconstrição/efeitos dos fármacos
14.
Toxicol Appl Pharmacol ; 381: 114710, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31415774

RESUMO

Cardiovascular diseases (CVD) are more frequent among postmenopausal women due to the decline of estrogen concentration in plasma. However, the role of the vascular modulator effect of estrogen is controversial, since it occurs both in physiological and pathological conditions, increasing or reducing vascular reactivity. As mercury is widely associated with the development of CVD, we investigated putative hazardous effects on the mechanisms that modulate vascular reactivity in aortic rings of female Wistar rats promoted by acute mercury exposure. Mercury increased vascular reactivity and oxidative stress possibly due to NADPH oxidase participation, increased production of cyclooxygenase-2 (COX-2) and thromboxane A2 (TXA2) formation. The metal also induced endothelial denudation in the aorta by reducing the bioavailability of nitric oxide (NO) and enhancing the activity of the PI3K/Akt signaling pathway. Mercury exposure also induced nuclear estrogen receptors (ERα, ERß) to act as vasoconstrictors. Our findings suggest that mercury might increase the chances of developing cardiovascular diseases in females and should be considered an important environmental risk factor.


Assuntos
Aorta Torácica/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Mercúrio/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Estrogênio/metabolismo , Vasoconstrição/efeitos dos fármacos , Animais , Aorta Torácica/metabolismo , Aorta Torácica/fisiologia , Núcleo Celular/fisiologia , Ciclo-Oxigenase 2/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Feminino , Óxido Nítrico/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxidos/metabolismo
15.
Arq. bras. cardiol ; 112(4): 374-380, Apr. 2019. tab
Artigo em Inglês | LILACS | ID: biblio-1001285

RESUMO

Abstract Background: Mercury's deleterious effects are associated with increased cardiovascular risk. Objective: To determine whether chronic exposure to inorganic mercury increases the activity of angiotensin-converting enzyme and its relationship with oxidative stress in several organs and tissues. Methods: We studied male Wistar and spontaneously hypertensive rats (SHR) (3-month-old) exposed or not to HgCl2 for 30 days. At the end of treatment, we investigated the following: changes in body weight, hemodynamic parameters, angiotensin-converting enzyme (ACE) activity and oxidative stress in the heart, aorta, lung, brain and kidney in hypertensive compared to normotensive animals. A value of p < 0.05 was considered significant. Results: Chronic exposure to HgCl2 did not affect weight gain in either group. Systolic blood pressure, measured weekly, did not increase in Wistar rats but showed a small increase in SHR rats. We also observed increases in left ventricular end-diastolic pressure and ACE activity in the plasma and hearts of normotensive rats. In the SHR+Hg group, ACE activity increased in plasma but decreased in kidney, lung, heart, brain and aorta. Oxidative stress was assessed indirectly by malondialdehyde (MDA) production, which increased in Hg-treated rats in both plasma and heart. In the SHR+Hg group, MDA increased in heart and aorta and decreased in lungs and brain. Conclusion: These results suggest that chronic exposure to inorganic mercury aggravates hypertension and produces more expressive changes in ACE activity and oxidative stress in SHRs. Such exposure affects the cardiovascular system, representing a risk factor for the development of cardiovascular disorders in normotensive rats and worsening of pre-existing risks for hypertension.


Resumo Fundamento: Os efeitos deletérios do mercúrio estão associados ao risco cardiovascular aumentado. Objetivo: Determinar se a exposição crônica ao mercúrio inorgânico aumenta a atividade da enzima conversora de angiotensina e sua relação com o estresse oxidativo em vários órgãos e tecidos. Métodos: Estudamos ratos Wistar e ratos espontaneamente hipertensos (SHR) (3 meses de idade) expostos ou não a HgCl2 por 30 dias. Ao final do tratamento, investigamos: alterações de peso, parâmetros hemodinâmicos, atividade da enzima conversora de angiotensina (ECA) e estresse oxidativo no coração, aorta, pulmão, cérebro e rim de animais hipertensos comparados a animais normotensos. Um valor de p < 0,05 foi considerado significativo. Resultados: A exposição crônica ao HgCl2 não afetou o ganho de peso em nenhum dos grupos. A pressão arterial sistólica, medida semanalmente, não aumentou em ratos Wistar, mas mostrou um pequeno aumento nos ratos SHR. Também observamos aumentos na pressão diastólica final do ventrículo esquerdo e na atividade da ECA no plasma e no coração de ratos normotensos. No grupo SHR + Hg, a atividade da ECA aumentou no plasma, mas diminuiu no rim, pulmão, coração, cérebro e aorta. O estresse oxidativo foi avaliado indiretamente pela produção de MDA, que aumentou nos ratos tratados com Hg tanto no plasma quanto no coração. No grupo SHR + Hg, o MDA aumentou no coração e na aorta e diminuiu nos pulmões e no cérebro. Conclusão: Estes resultados sugerem que a exposição crônica ao mercúrio inorgânico agrava a hipertensão e produz mudanças mais expressivas na atividade da ECA e no estresse oxidativo em SHRs. Essa exposição afeta o sistema cardiovascular, representando um fator de risco para o desenvolvimento de distúrbios cardiovasculares em ratos normotensos e para piorar riscos pré-existentes para hipertensão.


Assuntos
Animais , Masculino , Peptidil Dipeptidase A/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Hipertensão/metabolismo , Mercúrio/toxicidade , Intoxicação por Mercúrio/complicações , Aorta/enzimologia , Ratos Endogâmicos SHR , Valores de Referência , Fatores de Tempo , Pressão Sanguínea/efeitos dos fármacos , Encéfalo/enzimologia , Fatores de Risco , Ratos Wistar , Peptidil Dipeptidase A/análise , Coração , Hipertensão/fisiopatologia , Rim/enzimologia , Pulmão/enzimologia , Malondialdeído/sangue
16.
Sci Rep ; 9(1): 1868, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755648

RESUMO

Aluminum (Al), which is omnipresent in human life, is a potent neurotoxin. Here, we have tested the potential for Egg White Hydrolysate (EWH) to protect against changes in cognitive function in rats exposed to both high and low levels of Al. Indeed, EWH has been previously shown to improve the negative effects induced by chronic exposure to heavy metals. Male Wistar rats received orally: Group 1) Low aluminum level (AlCl3 at a dose of 8.3 mg/kg b.w. during 60 days) with or without EWH treatment (1 g/kg/day); Group 2) High aluminum level (AlCl3 at a dose of 100 mg/kg b.w. during 42 days) with or without EWH treatment (1 g/kg/day). After 60 or 42 days of exposure, rats exposed to Al and EWH did not show memory or cognitive dysfunction as was observed in Al-treated animals. Indeed, co-treatment with EWH prevented catalepsy, hippocampal oxidative stress, cholinergic dysfunction and increased number of activated microglia and COX-2-positive cells induced by Al exposure. Altogether, since hippocampal inflammation and oxidative damage were partially prevented by EWH, our results suggest that it could be used as a protective agent against the detrimental effects of long term exposure to Al.


Assuntos
Alumínio/toxicidade , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/prevenção & controle , Clara de Ovo , Alimento Funcional , Hidrolisados de Proteína/uso terapêutico , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/metabolismo , Comportamento Animal , Peso Corporal , Ciclo-Oxigenase 2/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
17.
Toxicol In Vitro ; 51: 106-113, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29772264

RESUMO

Copper is an essential metal for homeostasis and the functioning of living organisms. We investigated the effects of a high copper concentration on the myocardial mechanics, investigating the reactive oxygen species (ROS) mediated effects. The developed force of papillary muscles was reduced after acute exposure to a high copper concentration and was prevented by co-incubation with tempol, DMSO and catalase. The reuptake of calcium by the sarcoplasmic reticulum was reduced by copper and restored by tempol. The contractile response to Ca2+ was reduced and reversed by antioxidants. The response to the ß-adrenergic agonist decreased after exposure to copper and was restored by tempol and catalase. In addition, the in situ detection showed increased O2·- and OH·. Contractions dependent on the sarcolemmal Ca2+ influx were impaired by copper and restored by antioxidants. Myosin-ATPase activity decreased significantly after copper exposure. In conclusion, a high copper concentration can acutely impair myocardial excitation-contraction coupling, reduce the capacity to generate force, reduce the Ca2+ inflow and its reuptake, and reduce myosin-ATPase activity, and these effects are mediated by the local production of O2·-, OH· and H2O2. These toxicity effects of copper overload suggest that copper is a risk factor for cardiovascular disease.


Assuntos
Cobre/toxicidade , Músculos Papilares/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Cálcio/metabolismo , Masculino , Contração Miocárdica/efeitos dos fármacos , Miosinas/metabolismo , Músculos Papilares/metabolismo , Músculos Papilares/fisiologia , Ratos Wistar , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo
18.
J Inorg Biochem ; 181: 169-176, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28865725

RESUMO

Aluminum (Al) is a neurotoxic associated with a number of chronic human diseases. We investigated the effects of Al exposure at doses similar to human dietary levels and at a high level exposure to Al on the peripheral nervous system. Wistar male rats were divided into two major groups and received orally: 1) First group - Low level - rats were subdivided and treated for 60days: a) Control - received ultrapure water; b) AlCl3 - received Al at 8.3mg/kg body weight (bw) for 60days; and 2) Second group - High level - rats were subdivided and treated for 42days: C) Control - received ultrapure water through oral gavage; d) AlCl3 - received Al at 100mg/kg bw for 42days. Von Frey hair test, plantar test, the presence of catalepsy and the spontaneous motor activity were investigated. Reactive oxygen species, lipid peroxidation and total antioxidant capacity, immunohistochemistry to investigate the nerve inflammation and, the specific presence of Al in the sciatic nerve fibers were investigated. Al exposure at a representative human dietary level promotes the development of mechanical allodynia, catalepsy, increased inflammation in the sciatic nerve, systemic oxidative stress and, is able to be retained in the sciatic nerve. The effects of low-dose Al were similar to those found in rats exposed to Al at a dose much higher (100mg/kg). Our findings suggest that Al may be considered toxic for the peripheral nervous system, thus inducing peripheral dysfunction.


Assuntos
Alumínio/toxicidade , Neurite (Inflamação)/etiologia , Síndromes Neurotóxicas/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/etiologia , Sistema Nervoso Periférico/efeitos dos fármacos , Poluentes da Água/toxicidade , Alumínio/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Catalepsia/etiologia , Relação Dose-Resposta a Droga , Hiperalgesia/etiologia , Peroxidação de Lipídeos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Neurite (Inflamação)/imunologia , Neurite (Inflamação)/metabolismo , Neurite (Inflamação)/fisiopatologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia , Sistema Nervoso Periférico/imunologia , Sistema Nervoso Periférico/fisiopatologia , Doenças do Sistema Nervoso Periférico/imunologia , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/fisiopatologia , Ratos Wistar , Espécies Reativas de Oxigênio/sangue , Espécies Reativas de Oxigênio/metabolismo , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/imunologia , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Fatores de Tempo , Distribuição Tecidual , Testes de Toxicidade Crônica , Toxicocinética , Poluentes da Água/administração & dosagem
19.
Toxicol Lett ; 281: 158-174, 2017 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-28987480

RESUMO

The study aimed to investigate the effects of egg white hydrolysate (EWH) on vascular disorders induced by mercury (Hg). For this, male Wistar rats were treated for 60days: Untreated (saline, i.m.); Mercury (HgCl2, i.m., 1st dose 4.6µg/kg, subsequent doses 0.07µg/kg/day); Hydrolysate (EWH, gavage, 1g/kg/day); Hydrolysate-Mercury. Systolic (SBP) and diastolic (DBP) blood pressure measurement and vascular reactivity experiments in aorta were performed. We analyzed endothelial dependent and independent vasodilator responses and vasoconstrictor response to phenylephrine (Phe) in absence and presence of endothelium, a NOS inhibitor, a NADPH oxidase inhibitor, the superoxide dismutase, a non-selective COX inhibitor, a selective COX-2 inhibitor, an AT-1 receptors blocker. In situ superoxide anion production, SOD-1, NOX-4, p22phox, COX-2 and AT-1 mRNA levels and NOX-1 protein expression were performed in aorta while the determination of angiotensin converting enzyme (ACE) activity was measured in plasma. As results, EWH prevented the increase in SBP and Phe responses and the endothelial dysfunction elicited by Hg, which was related to decreased ACE activity and NOX activation by EWH and, subsequently, alleviated ROS production and improved NO bioavailability in aorta. In conclusion, EWH could be considered as alternative or complementary treatment tools for Hg-induced cardiovascular damage.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Clara de Ovo/química , Mercúrio/toxicidade , NADPH Oxidases/sangue , Peptídeos/farmacologia , Peptidil Dipeptidase A/sangue , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Doenças Cardiovasculares/induzido quimicamente , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Masculino , NADPH Oxidases/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Fenilefrina/farmacologia , Ratos , Ratos Wistar , Vasoconstritores/farmacologia
20.
Vascul Pharmacol ; 99: 23-33, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28912106

RESUMO

The goal of the present study was to evaluate vascular potassium channels and Na+-K+-ATPase activity in estrogen deficient female rats. Female rats that underwent ovariectomy were assigned to receive daily treatment with placebo (OVX) or estrogen replacement (OVX+E2, 1mg/kg, once a week, i.m.). Aortic rings were used to examine the involvement of K+ channels and Na+-K+-ATPase in vascular reactivity. Acetylcholine (ACh)-induced relaxation was analyzed in the presence of L-NAME (100µM) and K+ channels blockers: tetraethylammonium (TEA, 5mM), 4-aminopyridine (4-AP, 5mM), iberiotoxin (IbTX, 30nM), apamin (0.5mM), charybdotoxin (ChTX, 0.1mM) and iberiotoxin plus apamin. When aortic rings were pre-contracted with KCl (60mM) or pre-incubated with TEA (5mM), 4-aminopyridine (4-AP, 5mM) and iberiotoxin (IbTX, 30nM) plus apamin (0.5µM), the ACh-induced relaxation was less effective in the ovariectomized group. Additionally, 4-AP and IbTX decreased the relaxation by sodium nitroprusside in all groups but this reduction was greater in the ovariectomized group. Estrogen deficiency also increased aortic functional Na+-K+ ATPase activity evaluated by K+-induced relaxation. L-NAME or endothelium removal were not able to block the increase in aortic functional Na+-K+ ATPase activity, however, TEA (5mM) restored this increase to the control level. We also found that estrogen deficiency increased superoxide anion production and reduced nitric oxide release in aortic ring from ovariectomized animals. In summary, our results emphasize that the process underlying ACh-induced relaxation is preserved in ovariectomized animals due to the activation of K+ channels and increased Na+-K+ ATPase activity.


Assuntos
Aorta/enzimologia , Ovariectomia , Canais de Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Vasodilatação , Animais , Aorta/efeitos dos fármacos , Relação Dose-Resposta a Droga , Esquema de Medicação , Inibidores Enzimáticos/farmacologia , Estradiol/administração & dosagem , Terapia de Reposição de Estrogênios , Feminino , Técnicas In Vitro , Injeções Intramusculares , Óxido Nítrico/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Superóxidos/metabolismo , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA