Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38746299

RESUMO

Background: Pathogenic constitutional APC variants underlie familial adenomatous polyposis, the most common hereditary gastrointestinal polyposis syndrome. To improve variant classification and resolve the interpretative challenges of variants of uncertain significance (VUS), APC-specific ACMG/AMP variant classification criteria were developed by the ClinGen-InSiGHT Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel (VCEP). Methods: A streamlined algorithm using the APC -specific criteria was developed and applied to assess all APC variants in ClinVar and the InSiGHT international reference APC LOVD variant database. Results: A total of 10,228 unique APC variants were analysed. Among the ClinVar and LOVD variants with an initial classification of (Likely) Benign or (Likely) Pathogenic, 94% and 96% remained in their original categories, respectively. In contrast, 41% ClinVar and 61% LOVD VUS were reclassified into clinically actionable classes, the vast majority as (Likely) Benign. The total number of VUS was reduced by 37%. In 21 out of 36 (58%) promising APC variants that remained VUS despite evidence for pathogenicity, a data mining-driven work-up allowed their reclassification as (Likely) Pathogenic. Conclusions: The application of APC -specific criteria substantially reduced the number of VUS in ClinVar and LOVD. The study also demonstrated the feasibility of a systematic approach to variant classification in large datasets, which might serve as a generalisable model for other gene-/disease-specific variant interpretation initiatives. It also allowed for the prioritization of VUS that will benefit from in-depth evidence collection. This subset of APC variants was approved by the VCEP and made publicly available through ClinVar and LOVD for widespread clinical use.

2.
J Cancer Res Clin Oncol ; 143(8): 1489-1497, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28405827

RESUMO

PURPOSE: Expression of O6-methylguanine-DNA methyltransferase (MGMT) in Merkel cell carcinoma (MCC) is very variable; thus, we tested whether this may be due to differential methylation of the MGMT gene promoter. METHODS: Quantitative analysis of MGMT mRNA and protein expression, as well as MGMT promoter methylation status, was performed in a series of tissue samples of MCC tumors, representing both primary and metastatic lesions, as well as in six MCC cell lines. RESULTS: These analyses revealed a very heterogeneous MGMT mRNA and protein expression in MCC both in vivo and in vitro. However, neither the MGMT mRNA nor protein expression correlated with the sensitivity of MCC cell lines toward the alkylating agent dacarbazine in vitro. Notably, increased methylation at the promoter of the MGMT gene was observed in 2/6 (33%) of the MCC cell lines; however, MGMT promoter methylation was absent in all MCC tissue samples. According to our results, albeit aberrant methylation of MGMT gene promoter can be observed in in vitro propagated MCC cell lines, it seems to be absent or very rare in MCC lesions in situ. CONCLUSION: Thus, the evaluation of this marker has no or only little significance for predicting response to therapy or for improving efficacy of demethylating agents in the treatment of MCC. Microenvironmental factors may play a role in explaining the different results between MCC cell lines and MCC samples.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Célula de Merkel/genética , Metilação de DNA/genética , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Proteínas Supressoras de Tumor/genética , Animais , Biomarcadores Tumorais/biossíntese , Carcinoma de Célula de Merkel/patologia , Linhagem Celular Tumoral , Metilases de Modificação do DNA/biossíntese , Enzimas Reparadoras do DNA/biossíntese , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Regiões Promotoras Genéticas , Proteínas Supressoras de Tumor/biossíntese , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancer Biol Ther ; 16(9): 1375-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25835050

RESUMO

Understanding molecular mechanisms involved in melanoma resistance to drugs is a big challenge. Experimental evidences suggested a correlation between mutational status in B-RAF and melanoma cell susceptibility to drugs, such as paclitaxel, doxorubicin and temozolomide, which generate an accumulation of hydrogen peroxide (H2O2) in the cells. We investigated the survival phenotype and the protein level of c-myc, a B-RAF target molecule, in melanoma cells, carrying a different mutational status in B-RAF, upon paclitaxel, doxorubicin and H2O2 treatment. For the first time, we reported c-myc modulation is critical for melanoma drug response. It appeared drug-specific and post-transcriptionally driven through PP2A; in correlation, cell pre-treatment with okadaic acid (OA), a specific PP2A inhibitor, as well as PP2A silencing of melanoma cells, was able to increase melanoma cell drug-sensitivity and c-myc protein level. This is relevant for designing efficacious therapeutic strategies in melanoma.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Melanoma/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias Cutâneas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Expressão Gênica , Humanos , Peróxido de Hidrogênio/farmacologia , Melanoma/tratamento farmacológico , Paclitaxel/farmacologia , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-myc/genética , Neoplasias Cutâneas/tratamento farmacológico , Temozolomida
4.
Epilepsia ; 56(3): 422-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25656163

RESUMO

OBJECTIVE: Mutations of ATP1A3 have been associated with rapid onset dystonia-parkinsonism and more recently with alternating hemiplegia of childhood. Here we report one child with catastrophic early life epilepsy and shortened survival, and another with epilepsy, episodic prolonged apnea, postnatal microcephaly, and severe developmental disability. Novel heterozygous mutations (p.Gly358Val and p.Ile363Asn) were identified in ATP1A3 in these children. METHODS: Subjects underwent next-generation sequencing under a research protocol. Clinical data were collected retrospectively. The biochemical effects of the mutations on ATP1A3 protein function were investigated. Postmortem neuropathologic specimens from control and affected subjects were studied. RESULTS: The mutations localized to the P domain of the Na,K-ATPase α3 protein, and resulted in significant reduction of Na,K-ATPase activity in vitro. We demonstrate in both control human brain tissue and that from the subject with the p.Gly358Val mutation that ATP1A3 immunofluorescence is prominently associated with interneurons in the cortex, which may provide some insight into the pathogenesis of the disease. SIGNIFICANCE: The findings indicate these mutations cause severe phenotypes of ATP1A3-related disorder spectrum that include catastrophic early life epilepsy, episodic apnea, and postnatal microcephaly.


Assuntos
Doença Catastrófica , Epilepsia/genética , Epilepsia/psicologia , Mutação/genética , ATPase Trocadora de Sódio-Potássio/genética , Encéfalo/metabolismo , Encéfalo/patologia , Pré-Escolar , Análise Mutacional de DNA , Eletroencefalografia , Inibidores Enzimáticos/farmacologia , Epilepsia/complicações , Epilepsia/patologia , Feminino , Glutamato Descarboxilase/metabolismo , Células HEK293 , Humanos , Lactente , Masculino , Modelos Moleculares , Doenças do Sistema Nervoso/etiologia , Ouabaína/farmacologia , Transfecção
5.
Pediatr Int ; 54(5): 585-601, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22494076

RESUMO

BACKGROUND: The current diagnostic approach for mitochondrial disorders requires invasive procedures such as muscle biopsy and multiple biochemical testing but the results are often inconclusive. Clinical sequencing tests are available only for a limited number of genes. Recently, massively parallel sequencing has become a powerful tool for testing genetically heterogeneous conditions such as mitochondrial disorders. METHODS: Targeted next-generation sequencing was performed on 26 patients with known or suspected mitochondrial disorders using in-solution capture for the exons of 908 known and candidate nuclear genes and an Illumina genome analyzer. RESULTS: None of the 18 patients with various abnormal respiratory chain complex (RCC) activities had molecular defects in either subunits or assembly factors of mitochondrial RCC enzymes except a reference control sample with known mutations in SURF1. Instead, several variants in known pathogenic genes including CPT2, POLG, PDSS1, UBE3A, SDHD, and a few potentially pathogenic variants in candidate genes such as MTO1 or SCL7A13 were identified. CONCLUSIONS: Sequencing only nuclear genes for RCC subunits and assembly factors may not provide the diagnostic answers for suspected patients with mitochondrial disorders. The present findings indicate that the diagnostic spectrum of mitochondrial disorders is much broader than previously thought, which could potentially lead to misdiagnosis and/or inappropriate treatment. Overall analytic sensitivity and precision appear acceptable for clinical testing. Despite the limitations in finding mutations in all patients, the present findings underscore the considerable clinical benefits of targeted next-generation sequencing and serve as a prototype for extending the clinical evaluation in this clinically heterogeneous patient group.


Assuntos
Transporte de Elétrons/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças Mitocondriais/diagnóstico , Análise de Sequência de DNA/métodos , Sequência de Bases , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Doenças Mitocondriais/genética , Mutação
6.
Cell Cycle ; 10(17): 2924-36, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21857157

RESUMO

We have analyzed the proteomes of two human melanoma cell lines (A375 and 526), and of the human melanocytes, (FOM 78), by two-dimensional electrophoresis (2D-PAGE) and liquid chromatography - tandem mass spectrometry (LC-MS/MS). Our comparative proteomic analysis revealed that six proteins were over-expressed in both melanoma cell lines as compared to melanocytes: galectin-1, inosine-5'-monophosphate dehydrogenase 2, serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform, protein DJ-1, cyclophilin A and cofilin-1. We show, for the first time, that only specific isoforms of these molecules are over-expressed in melanoma. Different protein profiles were also found between each individual melanoma cell line and the melanocytes. s-Methyl-5-thioadenosine phosphorylase, ubiquitin and ribosomal protein S27 a precursor, the basic form of protein DJ-1, annexin a1, proliferation associated protein 2g4, isoform alfa-enolase of alfa-enolase, protein disulfide-isomerase precursor, and elongation factor 2 were more strongly expressed in A375 cells compared to melanocytes. In 526 cells, 60s acidic ribosomal protein p1 and calreticulin precursor were more highly expressed than in melanocytes. These molecular differences may help in better understanding melanoma development and its different responsiveness to therapies. The identified proteins could be exploited as biomarkers or therapeutic targets for melanoma.


Assuntos
Melanócitos/metabolismo , Melanoma/metabolismo , Precursores de Proteínas/metabolismo , Proteoma/análise , Biomarcadores , Western Blotting , Linhagem Celular Tumoral , Cromatografia Líquida , Cofilina 1/metabolismo , Ciclofilina A/metabolismo , Eletroforese em Gel Bidimensional , Galectina 1/metabolismo , Humanos , IMP Desidrogenase/metabolismo , Processamento de Imagem Assistida por Computador , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Espectrometria de Massas/métodos , Proteínas Oncogênicas/metabolismo , Proteína Desglicase DJ-1 , Isoformas de Proteínas/metabolismo , Proteômica
7.
Biol Reprod ; 73(4): 598-609, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15901640

RESUMO

In mature sperm, cAMP plays an important role as a second messenger regulating functions that include capacitation, the acrosome reaction, motility, and, in some cases, chemosensing. We have cloned from mouse testis a novel calmodulin-stimulated cyclic nucleotide phosphodiesterase 1A isoform, Pde1a_v7 (mmPDE1A7), which arises from an alternative transcription start in the cyclic nucleotide phosphodiesterase 1A gene. The open reading frame is predicted to encode a polypeptide with a molecular mass of 52 kDa. Two further variants of this form, which contain two additional new exons, arise from alternative splicing. Analysis of testis cDNA by real-time polymerase chain reaction (PCR) indicates that the Pde1A_v7 transcript variant is the most abundant. The PDE1A_v7 protein uniquely lacks the first amino-terminal calmodulin-binding domain, but does possess an inhibitory domain and a second calmodulin-binding site shared with other variants. In vitro translation of the corresponding Pde1a_v7 cDNA produced a 52-kDa polypeptide having cyclic nucleotide hydrolytic activity, which was stimulated threefold by calcium-bound calmodulin. Immunoprecipitation of cyclic nucleotide phosphodiesterase 1 activity from detergent extracts of mouse sperm revealed a major protein of the size expected for PDE1A_v7, and the immunocytochemical staining for cyclic nucleotide phosphodiesterase 1A in mouse sperm showed intense immunoreactivity in the tail only. These observations, along with the PCR data, strongly suggest that this new variant PDE1A_v7 is the major form of cyclic nucleotide phosphodiesterase 1A expressed in mature sperm and is therefore likely to play an important role in cyclic nucleotide regulation of mature sperm function.


Assuntos
Diester Fosfórico Hidrolases/genética , Espermatozoides/enzimologia , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1 , Variação Genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Diester Fosfórico Hidrolases/metabolismo , Homologia de Sequência de Aminoácidos , Motilidade dos Espermatozoides/fisiologia , Cauda do Espermatozoide/enzimologia , Testículo/enzimologia
8.
J Immunol ; 173(8): 4806-14, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15470020

RESUMO

The cAMP protein kinase A (PKA) pathway in T cells conveys an inhibitory signal to suppress inflammation. This study was performed to understand the mechanisms involved in cAMP-mediated signaling in T lymphocytes. A-kinase anchoring proteins (AKAPs) bind and target PKA to various subcellular locations. AKAPs also bind other signaling molecules such as cyclic nucleotide phosphodiesterases (PDEs) that hydrolyze cAMP in the cell. PDE4 and PDE7 have important roles in T cell activation. Based on this information, we hypothesized that AKAPs associate with PDEs in T lymphocytes. Immunoprecipitation of Jurkat cell lysates with Abs against both the regulatory subunit of PKA (RIIalpha) and specific AKAPs resulted in increased PDE activity associated with RIIalpha and AKAP95, AKAP149, and myeloid translocation gene (MTG) compared with control (IgG). Immunoprecipitation and pull-down analyses demonstrate that PDE4A binds to AKAP149, AKAP95, and MTG, but not AKAP79, whereas PDE7A was found to bind only MTG. Further analysis of MTG/PDE association illustrated that PDE4A and PDE7A bind residues 1-344 of MTG16b. Confocal analysis of HuT 78 cells stained with anti-PDE7A showed overlapping staining patterns with the Golgi marker GM130, suggesting that PDE7A is located in the Golgi. The staining pattern of PDE7A also showed similarity to the staining pattern of MTG, supporting the immunoprecipitation data and suggesting that MTG may interact with PDE7A in the Golgi. In summary, these data suggest that AKAPs interact with both PKA and PDE in T lymphocytes and thus are a key component of the signaling complex regulating T cell activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Proteínas/metabolismo , Linfócitos T/enzimologia , Proteínas de Ancoragem à Quinase A , Sítios de Ligação , AMP Cíclico/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Humanos , Isoenzimas/metabolismo , Células Jurkat , Fosfoproteínas/genética , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética
9.
Biochemistry ; 42(2): 284-92, 2003 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-12525155

RESUMO

Phospholipase D (PLD) is involved in the signaling by many extracellular ligands, and its regulation appears to be quite complex. We investigated the signaling pathways initiated by bradykinin (BK) or sphingosine 1-phosphate (S1P) in A549 cells to define molecular mechanisms responsible for their additive effects on PLD activity. BK and S1P each elicited a sustained increase in phosphatidic acid content through a rapid and transient activation of PLD. The two pathways demonstrated rapid homologous downregulation, but heterologous desensitization was not observed. Action of both agonists required protein kinase C (PKC) activation and Ca(2+) influx but was mediated by different heterotrimeric G proteins. In membranes, inhibition of PKCdelta by rottlerin enhanced BK activation of PLD but inhibited that by S1P. Rottlerin inhibited activation of PLD in nuclei by both BK and S1P. By in situ immunofluorescence or cell fractionation followed by immunoblotting, PLD1 was concentrated primarily in nuclei, whereas the membrane fraction contained PLD2 and PLD1. Moreover, PKCdelta specifically phosphorylated recombinant PLD2, but not PLD1. BK and S1P similarly enhanced RhoA translocation to nuclei, whereas BK was less efficacious than S1P on RhoA relocalization to membranes. Effects of both agonists on the nuclear fraction, which contains only PLD1, are compatible with a RhoA- and PKCdelta-dependent process. In membranes, which contain both PLD1 and PLD2, the stimulatory effect of S1P on PLD activity can best be explained by RhoA- and PKCdelta-dependent activation of PLD1; in contrast, the effects of BK on RhoA translocation and enhancement of BK-stimulated PLD activity by PKC inhibition are both consistent with PLD2 serving as its primary target.


Assuntos
Adenocarcinoma/enzimologia , Bradicinina/fisiologia , Proteínas Heterotriméricas de Ligação ao GTP/fisiologia , Neoplasias Pulmonares/enzimologia , Lisofosfolipídeos , Fosfolipase D/metabolismo , Proteína Quinase C/fisiologia , Transdução de Sinais/fisiologia , Esfingosina/análogos & derivados , Esfingosina/fisiologia , Adenocarcinoma/metabolismo , Bradicinina/agonistas , Cálcio/fisiologia , Ativação Enzimática/fisiologia , Glicerofosfolipídeos/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Ácidos Fosfatídicos/metabolismo , Proteína Quinase C-delta , Transporte Proteico/fisiologia , Esfingosina/agonistas , Frações Subcelulares/enzimologia , Frações Subcelulares/metabolismo , Trítio , Células Tumorais Cultivadas , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA