RESUMO
During this study a new Immunoperoxidase Monolayer Assay (IPMA) was developed for the detection of antibodies against lumpy skin disease virus (LSDV) in an easy and low tech setting. Using two dilutions (1:50 and 1:300) in a duplicate format, the test was shown to be highly sensitive, specific and repeatable. In comparison to the VNT and a commercial ELISA, the LSDV-IPMA was able to detect the LSDV antibodies earlier in infected, vaccinated and vaccinated/infected animals. The assay is very flexible as it can be easily adapted for the detection of sheeppox or goatpox antibodies and it can be scaled-up to handle medium size sample sets by preparing the IPMA plates in advance. These plates are safe and can be handled in low biosafety level labs.
Assuntos
Anticorpos Antivirais/isolamento & purificação , Técnicas Imunoenzimáticas/métodos , Doença Nodular Cutânea/diagnóstico , Doença Nodular Cutânea/imunologia , Vírus da Doença Nodular Cutânea/imunologia , Animais , Anticorpos Antivirais/imunologia , Bovinos , Técnicas de Cultura de Células , Linhagem Celular , Doenças das Cabras/diagnóstico , Doenças das Cabras/imunologia , Doenças das Cabras/virologia , Cabras , Sensibilidade e Especificidade , Ovinos , Doenças dos Ovinos/diagnóstico , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/virologiaRESUMO
Rhizomucor miehei is important from a biotechnological aspect in consequence of its content of aspartic proteinase, which has high milk-clotting activity. A genomic library of R. miehei NRRL 5901 has been constructed in a phage (Lambda Fix II) vector. The glyceraldehyde-3-phosphate dehydrogenase (gpd) gene was isolated from this library by hybridization of the recombinant phage clones with a gpd-specific gene probe generated by polymerase chain reaction. The complete nucleotide sequence encodes a putative polypeptide chain of 336 amino acids interrupted by 5 introns. The predicted amino acid sequence of this gene shows a high degree of sequence similarity to the glyceraldehyde-3-phosphate dehydrogenase proteins from yeast and filamentous fungi. The promoter region, containing a consensus TATA box, and 246-bp downstream from the putative stop codon were also determined. The possibility of using the gpd promoter in the construction of new transformation vectors is discussed.