Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Acta Biomater ; 179: 354-370, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490481

RESUMO

Fracture fixation in an ageing population is challenging and fixation failure increases mortality and societal costs. We report a novel fracture fixation treatment by applying a hydroxyapatite (HA) based biomaterial at the bone-implant interface and biologically activating the biomaterial by systemic administration of a bisphosphonate (zoledronic acid, ZA). We first used an animal model of implant integration and applied a calcium sulphate (CaS)/HA biomaterial around a metallic screw in the tibia of osteoporotic rats. Using systemic ZA administration at 2-weeks post-surgery, we demonstrated that the implant surrounded by HA particles showed significantly higher peri­implant bone formation compared to the unaugmented implants at 6-weeks. We then evaluated the optimal timing (day 1, 3, 7 and 14) of ZA administration to achieve a robust effect on peri­implant bone formation. Using fluorescent ZA, we demonstrated that the uptake of ZA in the CaS/HA material was the highest at 3- and 7-days post-implantation and the uptake kinetics had a profound effect on the eventual peri­implant bone formation. We furthered our concept in a feasibility study on trochanteric fracture patients randomized to either CaS/HA augmentation or no augmentation followed by systemic ZA treatment. Radiographically, the CaS/HA group showed signs of increased peri­implant bone formation compared with the controls. Finally, apart from HA, we demonstrated that the concept of biologically activating a ceramic material by ZA could also be applied to ß-tricalcium phosphate. This novel approach for fracture treatment that enhances immediate and long-term fracture fixation in osteoporotic bone could potentially reduce reoperations, morbidity and mortality. STATEMENT OF SIGNIFICANCE: • Fracture fixation in an ageing population is challenging. Biomaterial-based augmentation of fracture fixation devices has been attempted but lack of satisfactory biological response limits their widespread use. • We report the biological activation of locally implanted microparticulate hydroxyapatite (HA) particles placed around an implant by systemic administration of the bisphosphonate zoledronic acid (ZA). The biological activation of HA by ZA enhances peri­implant bone formation. •Timing of ZA administration after HA implantation is critical for optimal ZA uptake and consequently determines the extent of peri­implant bone formation. • We translate the developed concept from small animal models of implant integration to a proof-of-concept clinical study on osteoporotic trochanteric fracture patients. • ZA based biological activation can also be applied to other calcium phosphate biomaterials.


Assuntos
Durapatita , Osteogênese , Ácido Zoledrônico , Animais , Ácido Zoledrônico/farmacologia , Durapatita/química , Durapatita/farmacologia , Feminino , Humanos , Osteogênese/efeitos dos fármacos , Medicina Regenerativa/métodos , Ratos , Ratos Sprague-Dawley , Fixação de Fratura , Idoso , Difosfonatos/farmacologia , Difosfonatos/química , Idoso de 80 Anos ou mais , Masculino
2.
Biomater Sci ; 11(16): 5590-5604, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37403758

RESUMO

Their excellent mechanical properties, degradability and suitability for processing by 3D printing technologies make the thermoplastic polylactic acid and its derivatives favourable candidates for biomaterial-based bone regeneration therapies. In this study, we investigated whether bioactive mineral fillers, which are known to promote bone healing based on their dissolution products, can be integrated into a poly(L-lactic-co-glycolic) acid (PLLA-PGA) matrix and how key characteristics of degradation and cytocompatibility are influenced. The polymer powder was mixed with particles of CaCO3, SrCO3, strontium-modified hydroxyapatite (SrHAp) or tricalcium phosphates (α-TCP, ß-TCP) in a mass ratio of 90 : 10; the resulting composite materials have been successfully processed into scaffolds by the additive manufacturing method Arburg Plastic Freeforming (APF). Degradation of the composite scaffolds was investigated in terms of dimensional change, bioactivity, ion (calcium, phosphate, strontium) release/uptake and pH development during long-term (70 days) incubation. The mineral fillers influenced the degradation behavior of the scaffolds to varying degrees, with the calcium phosphate phases showing a clear buffer effect and an acceptable dimensional increase. The amount of 10 wt% SrCO3 or SrHAp particles did not appear to be appropriate to release a sufficient amount of strontium ions to exert a biological effect in vitro. Cell culture experiments with the human osteosarcoma cell line SAOS-2 and human dental pulp stem cells (hDPSC) indicated the high cytocompatibility of the composites: For all material groups cell spreading and complete colonization of the scaffolds over the culture period of 14 days as well as an increase of the specific alkaline phosphatase activity, typical for osteogenic differentiation, were observed.


Assuntos
Osteogênese , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Glicóis , Fosfatos de Cálcio/química , Minerais , Diferenciação Celular , Estrôncio/química , Impressão Tridimensional
3.
Acta Biomater ; 157: 162-174, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481501

RESUMO

Critical bone defects are the result of traumatic, infection- or tumor-induced segmental bone loss and represent a therapeutic problem that has not been solved by current reconstructive or regenerative strategies yet. Scaffolds functionalized with naturally occurring bioactive factor mixtures show a promising chemotactic and angiogenic potential in vitro and therefore might stimulate bone regeneration in vivo. To assess this prospect, the study targets at heparin-modified mineralized collagen scaffolds functionalized with naturally occurring bioactive factor mixtures and/or rhBMP-2. These scaffolds were implanted into a 2-mm segmental femoral defect in mice and analyzed in respect to newly formed bone volume (BV) and bone mineral density (BMD) by micro-computed tomography scans after an observation period of 6 weeks. To rate the degree of defect healing, the number of vessels, and the activity of osteoclasts and osteoblasts were analyzed histologically. The sole application of bioactive factor mixtures is inferior to the use of the recombinant growth factor rhBMP-2 regarding BV and degree of defect healing. A higher rhBMP-2 concentration or the combination with bioactive factor mixtures does not lead to a further enhancement in defect healing. Possibly, a synergistic effect can be achieved by further concentration or a prolonged release of bioactive factor mixtures. STATEMENT OF SIGNIFICANCE: The successful therapy of extended bone defects is still a major challenge in clinical routine. In this study we investigated the bone regenerative potential of naturally occuring bioactive factor mixtures derived from platelet concentrates, adipose tissue and cell secretomes as a cheap and promising alternative to recombinant growth factors in a murine segmental bone defect model. The mixtures alone were not able to induce complete bridging of the bone defect, but in combination with bone morphogenetic protein 2 bone healing seemed to be more physiological. The results show that naturally occuring bioactive factor mixtures are a promising add-on in a clinical setting.


Assuntos
Proteína Morfogenética Óssea 2 , Regeneração Óssea , Camundongos , Animais , Proteína Morfogenética Óssea 2/farmacologia , Microtomografia por Raio-X , Fator de Crescimento Transformador beta/farmacologia , Colágeno/farmacologia , Cicatrização , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
4.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35328820

RESUMO

To treat critical-size bone defects, composite materials and tissue-engineered bone grafts play important roles in bone repair materials. The purpose of this study was to investigate the bone regenerative potential of hybrid scaffolds consisting of macroporous calcium phosphate cement (CPC) and microporous mineralized collagen matrix (MCM). Hybrid scaffolds were synthetized by 3D plotting CPC and then filling with MCM (MCM-CPC group) and implanted into a 5 mm critical size femoral defect in rats. Defects left empty (control group) as well as defects treated with scaffolds made of CPC only (CPC group) and MCM only (MCM group) served as controls. Eight weeks after surgery, micro-computed tomography scans and histological analysis were performed to analyze the newly formed bone, the degree of defect healing and the activity of osteoclasts. Mechanical stability was tested by 3-point-bending of the explanted femora. Compared with the other groups, more newly formed bone was found within MCM-CPC scaffolds. The new bone tissue had a clamp-like structure which was fully connected to the hybrid scaffolds and thereby enhanced the biomechanical strength. Together, the biomimetic hybrid MCM-CPC scaffolds enhanced bone defect healing by improved osseointegration and their differentiated degradation provides spatial effects in the process of critical-bone defect healing.


Assuntos
Biomimética , Alicerces Teciduais , Animais , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/uso terapêutico , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Colágeno/farmacologia , Osteogênese , Ratos , Alicerces Teciduais/química , Microtomografia por Raio-X
5.
Curr Stem Cell Res Ther ; 17(5): 480-491, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35168511

RESUMO

BACKGROUND: While bone marrow-derived mesenchymal stromal cells (BM-MSCs) have been used for many years in bone tissue engineering applications, the procedure still has drawbacks such as painful collection methods and damage to the donor site. Dental pulp-derived stem cells (DPSCs) are readily accessible, occur in high amounts, and show a high proliferation and differentiation capability. Therefore, DPSCs may be a promising alternative for BM-MSCs to repair bone defects. OBJECTIVE: The aim of this study was to investigate the bone regenerative potential of DPSCs in comparison to BM-MSCs in vitro and in vivo. METHODS: In vitro investigations included analysis of cell doubling time as well as proliferation and osteogenic differentiation. For the in vivo study, 36 male NMRI nude mice were randomized into 3 groups: 1) control (cell-free mineralized collagen matrix (MCM) scaffold), 2) MCM + DPSCs, and 3) MCM + BMMSCs. Critical size 2 mm bone defects were created at the right femur of each mouse and stabilized by an external fixator. After 6 weeks, animals were euthanized, and microcomputed tomography scans (µCT) and histological analyses were performed. RESULTS: In vitro DPSCs showed a 2-fold lower population doubling time and a 9-fold higher increase in proliferation when seeded onto MCM scaffolds as compared to BM-MSCs, but DPSCs showed a significantly lower osteogenic capability than BM-MSCs. In vivo, the healing of the critical bone defect in NMRI nude mice was comparable among all groups. CONCLUSION: Pre-seeding of MCM scaffolds with DPSCs and BM-MSCs did not enhance bone defect healing.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Polpa Dentária , Masculino , Camundongos , Camundongos Nus , Células-Tronco , Microtomografia por Raio-X
6.
Int J Mol Sci ; 22(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072505

RESUMO

To develop cost-effective and efficient bone substitutes for improved regeneration of bone defects, heparin-modified mineralized collagen scaffolds were functionalized with concentrated, naturally occurring bioactive factor mixtures derived from adipose tissue, platelet-rich plasma and conditioned medium from a hypoxia-treated human bone marrow-derived mesenchymal stem cell line. Besides the analysis of the release kinetics of functionalized scaffolds, the bioactivity of the released bioactive factors was tested with regard to chemotaxis and angiogenic tube formation. Additionally, functionalized scaffolds were seeded with human bone marrow-derived mesenchymal stromal cells (hBM-MSC) and their osteogenic and angiogenic potential was investigated. The release of bioactive factors from the scaffolds was highest within the first 3 days. Bioactivity of the released factors could be confirmed for all bioactive factor mixtures by successful chemoattraction of hBM-MSC in a transwell assay as well as by the formation of prevascular structures in a 2D co-culture system of hBM-MSC and human umbilical vein endothelial cells. The cells seeded directly onto the functionalized scaffolds were able to express osteogenic markers and form tubular networks. In conclusion, heparin-modified mineralized collagen scaffolds could be successfully functionalized with naturally occurring bioactive factor mixtures promoting cell migration and vascularization.


Assuntos
Indutores da Angiogênese/farmacologia , Materiais Biocompatíveis , Produtos Biológicos/farmacologia , Regeneração Óssea/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Colágeno , Alicerces Teciduais , Tecido Adiposo/metabolismo , Adulto , Biomarcadores , Substitutos Ósseos , Linhagem Celular , Células Cultivadas , Feminino , Expressão Gênica , Humanos , Masculino , Adulto Jovem
7.
BMC Musculoskelet Disord ; 22(1): 401, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33941144

RESUMO

BACKGROUND: Due to their multilineage potential and high proliferation rate, mesenchymal stem cells (MSC) indicate a sufficient alternative in regenerative medicine. In comparison to the commonly used 2-dimensional culturing method, culturing cells as spheroids stimulates the cell-cell communication and mimics the in vivo milieu more accurately, resulting in an enhanced regenerative potential. To investigate the osteoregenerative potential of MSC spheroids in comparison to MSC suspensions, cell-loaded fibrin gels were implanted into murine critical-sized femoral bone defects. METHODS: After harvesting MSCs from 4 healthy human donors and preculturing and immobilizing them in fibrin gel, cells were implanted into 2 mm murine femoral defects and stabilized with an external fixator. Therefore, 26 14- to 15-week-old nu/nu NOD/SCID nude mice were randomized into 2 groups (MSC spheroids, MSC suspensions) and observed for 6 weeks. Subsequently, micro-computed tomography scans were performed to analyze regenerated bone volume and bone mineral density. Additionally, histological analysis, evaluating the number of osteoblasts, osteoclasts and vessels at the defect side, were performed. Statistical analyzation was performed by using the Student's t-test and, the Mann-Whitney test. The level of significance was set at p = 0.05. RESULTS: µCT-analysis revealed a significantly higher bone mineral density of the MSC spheroid group compared to the MSC suspension group. However, regenerated bone volume of the defect side was comparable between both groups. Furthermore, no significant differences in histological analysis between both groups could be shown. CONCLUSION: Our in vivo results reveal that the osteo-regenerative potential of MSC spheroids is similar to MSC suspensions.


Assuntos
Transplante de Células-Tronco Mesenquimais , Osteogênese , Animais , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Suspensões , Microtomografia por Raio-X
8.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093051

RESUMO

In this study, the bone-regenerative potential of bioactive factors derived from adipose tissue, platelet-rich plasma (PRP) and conditioned medium from hypoxia-treated human telomerase immortalized bone-marrow-derived mesenchymal stem cells (hTERT-MSC) was investigated in vitro with the aim to develop cost-effective and efficient bone substitutes for optimized regeneration of bone defects. Adipose tissue was harvested from human donors undergoing reconstructive surgery, and adipose tissue extract (ATE) was prepared. Platelet lysates (PL) were produced by repeated freeze-thaw cycles of PRP, and hypoxia-conditioned medium (HCM) was obtained by culturing human telomerase immortalized bone-marrow-derived mesenchymal stromal cells for 5 days with 1% O2. Besides analysis by cytokine and angiogenesis arrays, ELISA was performed. Angiogenic potential was investigated in cocultures of bone-marrow-derived (BM)-MSC and human umbilical vein endothelial cells. Multiple angiogenic proteins and cytokines were detected in all growth factor mixtures. HCM and ATE contained high amounts of angiogenin and CCL2/MCP-1, whereas PL contained high amounts of IGFBP-1. Culturing cells with HCM and ATE significantly increased specific ALP activity of BM-MSC as well as tubule length and junctions of endothelial networks, indicating osteogenic and angiogenic stimulation. To achieve a synergism between chemoattractive potential and osteogenic and angiogenic differentiation capacity, a combination of different growth factors appears promising for potential clinical applications.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Tecido Adiposo/química , Tecido Adiposo/metabolismo , Adulto , Indutores da Angiogênese/química , Indutores da Angiogênese/metabolismo , Hipóxia Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL2/metabolismo , Meios de Cultivo Condicionados/química , Citocinas/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Neovascularização Fisiológica/genética , Osteogênese/genética , Plasma Rico em Plaquetas/química , Plasma Rico em Plaquetas/metabolismo , Análise Serial de Proteínas , Ribonuclease Pancreático/metabolismo , Ribonuclease Pancreático/farmacologia
9.
ACS Appl Mater Interfaces ; 12(11): 12557-12572, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32092249

RESUMO

Extrusion-based bioprinting, also known as 3D bioplotting, is a powerful tool for the fabrication of tissue equivalents with spatially defined cell distribution. Even though considerable progress has been made in recent years, there is still a lack of bioinks which enable a tissue-like cell response and are plottable at the same time with good shape fidelity. Herein, we report on the development of a bioink which includes fresh frozen plasma from full human blood and thus a donor/patient-specific protein mixture. By blending of the plasma with 3 w/v% alginate and 9 w/v% methylcellulose, a pasty bioink (plasma-alg-mc) was achieved, which could be plotted with high accuracy and furthermore allowed bioplotted mesenchymal stromal cells (MSC) and primary osteoprogenitor cells to spread within the bioink. In a second step, the novel plasma-based bioink was combined with a plottable self-setting calcium phosphate cement (CPC) to fabricate bone-like tissue constructs. The CPC/plasma-alg-mc biphasic constructs revealed open porosity over the entire time of cell culture (35 d), which is crucial for bone tissue engineered grafts. The biphasic structures could be plotted in volumetric and clinically relevant dimensions and complex shapes could be also generated, as demonstrated for a scaphoid bone model. The plasma bioink potentiated that bioplotted MSC were not harmed by the setting process of the CPC. Latest after 7 days, MSC migrated from the hydrogel to the CPC surface, where they proliferated to 20-fold of the initial cell number covering the entire plotted constructs with a dense cell layer. For bioplotted and osteogenically stimulated osteoprogenitor cells, a significantly increased alkaline phosphatase activity was observed in CPC/plasma-alg-mc constructs in comparison to plasma-free controls. In conclusion, the novel plasma-alg-mc bioink is a promising new ink for several forms of bioprinted tissue equivalents and especially gainful for the combination with CPC for enhanced, biofabricated bone-like constructs.


Assuntos
Materiais Biocompatíveis/farmacologia , Bioimpressão/métodos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Plasma/química , Alginatos , Materiais Biocompatíveis/química , Osso e Ossos/citologia , Fosfatos de Cálcio , Células Cultivadas , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidroxiapatitas , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Pessoa de Meia-Idade , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Engenharia Tecidual
10.
Adv Healthc Mater ; 9(2): e1901426, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31830380

RESUMO

The development of biomaterials with intrinsic potential to stimulate endogenous tissue regeneration at the site of injury is a main demand on future implants in regenerative medicine. For critical-sized bone defects, an in situ tissue engineering concept is devised based on biomimetic mineralized collagen scaffolds. These scaffolds are functionalized with a central depot loaded with a signaling factor cocktail, obtained from secretome of hypoxia-conditioned human mesenchymal stem cells (MSC). Therefore, hypoxia-conditioned medium (HCM)-production is standardized and adapted to achieve high signaling factor-yields; a concentration protocol based on dialysis and freeze-drying is established to enable the integration of sufficient and defined amounts into the depot. In humid milieu-as after implantation-signaling factors are released by forming a chemotactic gradient, inducing a directed migration of human bone marrow stroma cells (hBMSC) into the scaffold. Angiogenic potential, determined by coculturing human umbilical vein endothelial cells (HUVEC) with osteogenically induced hBMSC shows prevascular structures, which sprout throughout the interconnected pores in a HCM-concentration-dependent manner. Retarded release by alginate-based (1 vol%) depots, significantly improves sprouting-depth and morphology of tubular structures. With the intrinsic potential to supply attracted cells with oxygen and nutrients, this bioactive material system has great potential for clinical translation.


Assuntos
Indutores da Angiogênese/farmacologia , Substitutos Ósseos/química , Meios de Cultivo Condicionados/química , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Adulto , Indutores da Angiogênese/química , Materiais Biomiméticos , Regeneração Óssea/fisiologia , Calcificação Fisiológica/efeitos dos fármacos , Hipóxia Celular , Movimento Celular , Células Cultivadas , Colágeno/química , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Liofilização , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos
11.
J Biomed Mater Res B Appl Biomater ; 108(1): 174-182, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30950569

RESUMO

The application of strontium is one option for the clinical treatment of osteoporosis-a disease characterized by reduced bone density and quality-in order to reduce the risk of vertebral and nonvertebral fractures. Unlike other drugs used in osteoporosis therapy, strontium shows a dual effect on bone metabolism by attenuating cellular resorption and simultaneously enhancing new bone tissue formation. Current concerns regarding the systemic application of highly dosed strontium ranelate led to the development of strontium-modified scaffolds based on mineralized collagen (MCM) capable to release biologically active Sr2+ ions directly at the fracture site. In this study, we investigated the regenerative potential of these scaffolds. For in vitro investigations, human mesenchymal stromal cells were cultivated on the scaffolds for 21 days (w/ and w/o osteogenic supplements). Biochemical analysis revealed a significant promoting effect on proliferation rate and osteogenic differentiation on strontium-modified scaffolds. In vivo, scaffolds were implanted in a murine segmental bone defect model-partly additionally functionalized with the osteogenic growth factor bone morphogenetic protein 2 (BMP-2). After 6 weeks, bridging calluses were obtained in BMP-2 functionalized scaffolds; the quality of the newly formed bone tissue by means of morphological scores was clearly enhanced in strontium-modified scaffolds. Histological analysis revealed increased numbers of osteoblasts and blood vessels, decreased numbers of osteoclasts, and significantly enhanced mechanical properties. These results indicate that the combined release of Sr2+ ions and BMP-2 from the biomimetic scaffolds is a promising strategy to enhance bone regeneration, especially in patients suffering from osteoporosis. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:174-182, 2020.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Regeneração Óssea , Fraturas do Fêmur/terapia , Fêmur/metabolismo , Células-Tronco Mesenquimais/metabolismo , Estrôncio/farmacologia , Alicerces Teciduais , Animais , Calo Ósseo/metabolismo , Calo Ósseo/patologia , Fraturas do Fêmur/metabolismo , Fraturas do Fêmur/patologia , Fêmur/patologia , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Nus
12.
Oxid Med Cell Longev ; 2019: 4824209, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827676

RESUMO

Oxidative stress (OS) caused by multiple factors occurs after the implantation of bone repair materials. DNA methylation plays an important role in the regulation of osteogenic differentiation. Moreover, recent studies suggest that DNA methyltransferases (Dnmts) are involved in bone formation and resorption. However, the effect and mechanism of DNA methylation changes induced by OS on bone formation after implantation still remain unknown. Three-dimensional (3D) cell culture systems are much closer to the real situation than traditional monolayer cell culture systems in mimicking the in vivo microenvironment. We have developed porous 3D scaffolds composed of mineralized collagen type I, which mimics the composition of the extracellular matrix of human bone. Here, we first established a 3D culture model of human mesenchymal stem cells (hMSCs) seeded in the biomimetic scaffolds using 160 µM H2O2 to simulate the microenvironment of osteogenesis after implantation. Our results showed that decreased methylation levels of ALP and RUNX2 were induced by H2O2 treatment in hMSCs cultivated in the 3D scaffolds. Furthermore, we found that Dnmt3a was significantly downregulated in a porcine anterior lumbar interbody fusion model and was confirmed to be reduced by H2O2 treatment using the 3D in vitro model. The hypomethylation of ALP and RUNX2 induced by H2O2 treatment was abolished by Dnmt3a overexpression. Moreover, our findings demonstrated that the Dnmt inhibitor 5-AZA can enhance osteogenic differentiation of hMSCs under OS, evidenced by the increased expression of ALP and RUNX2 accompanied by the decreased DNA methylation of ALP and RUNX2. Taken together, these results suggest that Dnmt3a-mediated DNA methylation changes regulate osteogenic differentiation and 5-AZA can enhance osteogenic differentiation via the hypomethylation of ALP and RUNX2 under OS. The biomimetic 3D scaffolds combined with 5-AZA and antioxidants may serve as a promising novel strategy to improve osteogenesis after implantation.


Assuntos
Diferenciação Celular , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Osteogênese , Estresse Oxidativo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Decitabina/farmacologia , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Doenças da Coluna Vertebral/terapia , Doenças da Coluna Vertebral/veterinária , Suínos , Engenharia Tecidual , Alicerces Teciduais/química
13.
J Orthop Res ; 37(6): 1318-1328, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30628121

RESUMO

Adult stem cells are a promising tool to positively influence bone regeneration. Concentrated bone marrow therapy entails isolating osteoprogenitor cells during surgery with, however, only low cells yield. Two step stem cell therapy requires an additional harvesting procedure but generates high numbers of progenitor cells that facilitate osteogenic pre-differentiation. To further improve bone regeneration, stem cell therapy can be combined with growth factors from platelet rich plasma (PRP) or its lysate (PL) to potentially fostering vascularization. The aim of this study was to investigate the effects of bone marrow concentrate (BMC), osteogenic pre-differentiation of mesenchymal stromal cells (MSCs), and PL on bone regeneration and vascularization. Bone marrow from four different healthy human donors was used for either generation of BMC or for isolation of MSCs. Seventy-two mice were randomized to six groups (Control, PL, BMC, BMC + PL, pre-differentiated MSCs, pre-differentiated MSCs + PL). The influence of PL, BMC, and pre-differentiated MSCs was investigated systematically in a 2 mm femoral bone defect model. After a 6-week follow-up, the pre-differentiated MSCs + PL group showed the highest bone volume, highest grade of histological defect healing and highest number of bridged defects with measurable biomechanical stiffness. Using expanded and osteogenically pre-differentiated MSCs for treatment of a critical-size bone defect was favorable with regards to bone regeneration compared to treatment with cells from BMC. The addition of PL alone had no significant influence; therefore the role of PL for bone regeneration remains unclear. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1318-1328, 2019.


Assuntos
Transplante de Medula Óssea/métodos , Regeneração Óssea/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Idoso , Animais , Fenômenos Biomecânicos , Diferenciação Celular , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Microtomografia por Raio-X
14.
Biofabrication ; 10(4): 045002, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30004388

RESUMO

Due to their characteristic resemblance of the mineral component of bone, calcium phosphates are widely accepted as optimal bone substitute materials. Recent research focused on the development of pasty calcium phosphate cement (CPC) formulations, which can be fabricated into various shapes by low-temperature extrusion-based additive manufacturing, namely 3D plotting. While it could be demonstrated that sensitive substances like growth factors can be integrated in such printed CPC scaffolds without impairment of their biological activity live cells cannot be suspended in CPC as they may not be functional when enclosed in a solid and stiff matrix. In contrast, 3D bioprinting of soft cell-laden hydrogels (bioinks) enables the fabrication of constructs with spatially defined cell distribution, which has the potential to overcome problems of conventional cell seeding techniques-but such objects lack mechanical stability. Herein, we combine 3D plotting of CPC and bioprinting of a cell-laden bioink for the first time. As model bioink, an alginate-methylcellulose blend (alg/mc) was used, previously developed by us. Firstly, a fabrication regime was established, enabling optimal setting of CPC and cell survival inside the bioink. As the cells are exposed to the chemical changes of CPC precursors during setting, we studied the compatibility of the complex system of CPC and cell-laden alg/mc for a combined extrusion process and characterized the cellular behavior of encapsulated human mesenchymal stroma cells within the bioink at the interface and in direct vicinity to the CPC. Furthermore, biphasic scaffolds were mechanically characterized and a model for osteochondral tissue grafts is proposed. The manuscript discusses possible impacts of the CPC setting reaction on cells within the bioink and illustrates the advantages of CPC in bioprinting as alternative to the commonly used thermoplasts for bone tissue engineering.


Assuntos
Bioimpressão , Cimentos Ósseos/química , Fosfatos de Cálcio/química , Tinta , Minerais/química , Alicerces Teciduais/química , Alginatos/química , Sobrevivência Celular , Força Compressiva , Humanos , Umidade , Células-Tronco Mesenquimais/citologia , Metilcelulose/química
15.
Stem Cell Res ; 16(3): 782-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27155399

RESUMO

BMSCs, also known as bone marrow-derived mesenchymal stem cells, provide an excellent source of progenitor cells for regenerative therapy. To assess whether osteoarthritis (OA) affects the regenerative potential of BMSCs we compared the proliferation and differentiation potential as well as the surface marker expression profile of OA- versus control BMSCs. BMSCs were isolated from bone marrow aspirates of n=14 patients with advanced-stage idiopathic hip OA (67±6years) and n=15 healthy individuals (61±4years). Proliferation was quantified by total DNA content and colony-forming-units of fibroblastsmax (CFU-F) assay. Differentiation assays included immunohistology, cell-specific alkaline phosphatase (ALP) activity, and osteogenic, chondrogenic as well as adipogenic marker gene qRT-PCR. Expression of BMSC-associated surface markers was analyzed using flow cytometry. No significant intergroup differences were observed concerning the proliferation potential, cell-specific ALP activity as well as adipogenic and osteogenic differentiation marker gene expressions. Interestingly, SOX9 gene expression levels were significantly increased in OA-BMSCs after 14days of chondrogenic stimulation (p<0.01). The surface markers CD73, CD90 and STRO-1 were elevated in relation to CD14, CD34 and CD45 in both groups (p<0.0001). Notably, OA-BMSCs showed significantly increased CD90 (p<0.01) and decreased CD166 (p<0.001) levels. Overall, the in vitro characteristics of BMSCs are not markedly influenced by OA. However, increased SOX9 and CD90 as well as reduced CD166 expression levels in OA-BMSCs warrant further investigation. These data will help to further understand the role of BMSC in OA and facilitate the application of autologous cell-based strategies for musculoskeletal tissue regeneration in OA patients.


Assuntos
Células da Medula Óssea/citologia , Células-Tronco Mesenquimais/citologia , Osteoartrite/patologia , Adipogenia , Idoso , Antígenos CD/genética , Antígenos CD/metabolismo , Estudos de Casos e Controles , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Diferenciação Celular , Células Cultivadas , Condrogênese , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Osteoartrite/metabolismo , Osteogênese , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Índice de Gravidade de Doença , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo
16.
J Appl Biomater Funct Mater ; 14(1): e1-8, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26689816

RESUMO

PURPOSE: Tissue regeneration can be improved by local application of autologous bone marrow derived progenitor cells (BMSC) and platelet rich plasma (PRP). However, there is a lack of standardized application procedures for clinical use. Therefore, a technique in accordance with the guidelines for advanced therapies medical products of the European Medicine Agency was developed and established. METHODS: In detail, a process for the isolation and formulation of autologous bone marrow cells (BMC) and PRP in a clinical setting was validated. To investigate the influence of storage time and temperature on gel formation and gel stability, different concentrations of BMC were stored with and without additional platelets, thrombin and fibrinogen and analyzed over a period of 28 days. In addition, cell vitality using a live-dead staining and migration ability of human mesenchymal stem cells (hMSC) in the gel clot was investigated. RESULTS: For an optimized stable gel clot, human BMC and PRP should be combined with 10% to 20% fibrinogen (9 mg/mL to 18 mg/mL) and 5% to 20% thrombin (25 I.E. to 100 I.E.). Both freshly prepared and stored cells for 1 to 7 days had a stable consistence over 28 days at 37°C. Different platelet concentrations did not influence gel clot formation. The ratio of living cells did not decrease significantly over the observation period of 5 days in the live-dead staining. CONCLUSIONS: The study identified an optimal gel texture for local application of BMC and PRP. Seeded hMSC could migrate therein and were able to survive to initiate a healing cascade.


Assuntos
Células da Medula Óssea , Transplante de Medula Óssea/métodos , Separação Celular/métodos , Transplante de Células/métodos , Plasma Rico em Plaquetas , Células-Tronco , Autoenxertos , Humanos , Pesquisa Translacional Biomédica
17.
Stem Cells ; 33(6): 1863-77, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25787271

RESUMO

Reduced tissue levels of endothelial progenitor cells (EPCs) and functional impairment of endothelium are frequently observed in patients with diabetes and cardiovascular disease. The vascular endothelium is specifically sensitive to oxidative stress, and this is one of the mechanisms that causes widespread endothelial dysfunction in most cardiovascular diseases and disorders. Hence attention has increasingly been paid to enhance mobilization and differentiation of EPCs for therapeutic purposes. The aim of this study was to investigate whether Icariin, a natural bioactive component known from traditional Chinese Medicine, can induce angiogenic differentiation and inhibit oxidative stress-induced cell dysfunction in bone marrow-derived EPCs (BM-EPCs), and, if so, through what mechanisms. We observed that treatment of BM-EPCs with Icariin significantly promoted cell migration and capillary tube formation, substantially abrogated hydrogen peroxide (H2 O2 )-induced apoptotic and autophagic programmed cell death that was linked to the reduced intracellular reactive oxygen species levels and restored mitochondrial membrane potential. Icariin downregulated endothelial nitric oxide synthase 3, as well as nicotinamide-adenine dinucleotide phosphate-oxidase expression upon H2 O2 induction. These antiapoptotic and antiautophagic effects of Icariin are possibly mediated by restoring the loss of mammalian target of rapamycin /p70S6K/4EBP1 phosphorylation as well as attenuation of ATF2 and ERK1/2 protein levels after H2 O2 treatment. In summary, favorable modulation of the angiogenesis and redox states in BM-EPCs make Icariin a promising proangiogenic agent both enhancing vasculogenesis and protecting against endothelial dysfunction.


Assuntos
Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Progenitoras Endoteliais/efeitos dos fármacos , Flavonoides/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Progenitoras Endoteliais/citologia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
18.
Biochem Pharmacol ; 90(1): 34-49, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24780446

RESUMO

The vascular endothelium is specifically sensitive to oxidative stress, and this is one of the mechanisms that causes widespread endothelial dysfunction in most cardiovascular diseases and disorders. Protection against reactive oxygen species (ROS)-mediated oxidative damage via antioxidant mechanisms is essential for tissue maintenance and shows therapeutic potential for patients suffering from cardiovascular and metabolic disorders. Salvianolic acid B (SalB), a natural bioactive component known from Traditional Chinese Medicine, has been reported to exert cellular protection in various types of cells. However, the underlying mechanisms involved are not fully understood. Here, we showed that SalB significantly promoted the migratory and tube formation abilities of human bone marrow derived-endothelial progenitor cells (BM-EPCs) in vitro, and substantially abrogated hydrogen peroxide (H2O2)-induced cell damage. SalB down-regulated Nox4 and eNOS, as well as nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase expression upon H2O2 induction that in turn prevents oxidative-induced endothelial dysfunction. Moreover, SalB suppressed the Bax/Bcl-xL ratio and caspase-3 activation after H2O2 induction. Furthermore, our results provide mechanistic evidence that activation of the mTOR/p70S6K/4EBP1 pathways is required for both SalB-mediated angiogenic and protective effects against oxidative stress-induced cell injury in BM-EPCs. Suppression of MKK3/6-p38 MAPK-ATF2 and ERK1/2 signaling pathways by SalB significantly protected BM-EPCs against cell injury caused by oxidative stress via reduction of intracellular ROS levels and apoptosis. Taken together, by providing a mechanistic insight into the modulation of redox states in BM-EPCs by SalB, we suggest that SalB has a strong potential of being a new proangiogenic and cytoprotective therapeutic agent with applications in the field of endothelial injury-mediated vascular diseases.


Assuntos
Benzofuranos/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator 2 Ativador da Transcrição/genética , Fator 2 Ativador da Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Western Blotting , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Proteínas de Ciclo Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Humanos , Peróxido de Hidrogênio/farmacologia , Microscopia de Fluorescência , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oxidantes/farmacologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adulto Jovem , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Br J Pharmacol ; 171(9): 2440-56, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24471788

RESUMO

BACKGROUND AND PURPOSE: With the increase of age, increased susceptibility to apoptosis and senescence may contribute to proliferative and functional impairment of endothelial progenitor cells (EPCs). The aim of this study was to investigate whether salidroside (SAL) can induce angiogenic differentiation and inhibit oxidative stress-induced apoptosis in bone marrow-derived EPCs (BM-EPCs), and if so, through what mechanism. EXPERIMENTAL APPROACH: BM-EPCs were isolated and treated with different concentrations of SAL for up to 4 days. Cell proliferation, migration and tube formation ability were detected by DNA content quantification, transwell assay and Matrigel-based angiogenesis assay. Gene and protein expression were assessed by qRT-PCR and Western blot respectively. KEY RESULTS: Treatment with SAL promoted cellular proliferation and angiogenic differentiation of BM-EPCs, and increased VEGF and NO secretion, which in turn mediated the enhanced angiogenic differentiation of BM-EPCs. Furthermore, SAL significantly attenuated hydrogen peroxide (H2O2)-induced cell apoptosis, reduced the intracellular level of reactive oxygen species and restored the mitochondrial membrane potential of BM-EPCs. Moreover, SAL stimulated the phosphorylation of Akt, mammalian target of rapamycin and p70 S6 kinase, as well as ERK1/2, which is associated with cell migration and capillary tube formation. Additionally, SAL reversed the phosphorylation of JNK and p38 MAPK induced by H2O2 and suppressed the changes in the Bax/Bcl-xL ratio observed after stimulation with H2O2. CONCLUSIONS AND IMPLICATIONS: These findings identify novel mechanisms that regulate EPC function and suggest that SAL has therapeutic potential as a new agent to enhance vasculogenesis as well as protect against oxidative endothelial injury.


Assuntos
Indutores da Angiogênese/farmacologia , Células Progenitoras Endoteliais/metabolismo , Glucosídeos/farmacologia , Sistema de Sinalização das MAP Quinases/fisiologia , Fenóis/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adulto , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Cultivadas , Citoproteção/efeitos dos fármacos , Citoproteção/fisiologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pessoa de Meia-Idade , Adulto Jovem
20.
J Tissue Eng Regen Med ; 8(9): 682-93, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22933381

RESUMO

The major advantage of hydroxyapatite (HA)-forming calcium phosphate cements (CPCs) used as bone replacement materials is their setting under physiological conditions without the necessity for thermal treatment that allows the incorporation of biological factors. In the present study, we have combined the biocompatible consolidation of CPCs with the potential of rapid prototyping (RP) techniques to generate calcium phosphate-based scaffolds with defined inner and outer morphology. We demonstrate the application of the RP technique three-dimensional (3D) plotting for the fabrication of HA cement scaffolds. This was realized by utilizing a paste-like CPC (P-CPC) which is stable as a malleable paste and whose setting reaction is initiated only after contact with aqueous solutions. The P-CPC showed good processability in the 3D plotting process and allowed the fabrication of stable 3D structures of different geometries with adequate mechanical stability and compressive strength. The cytocompatibility of the plotted P-CPC scaffolds was demonstrated in a cell culture experiment with human mesenchymal stem cells. The mild conditions during 3D plotting and post-processing and the realization of the whole procedure under sterile conditions make this approach highly attractive for fabrication of individualized implants with respect to patient-specific requirements by simultaneous plotting of biological components.


Assuntos
Cimentos Ósseos/farmacologia , Fosfatos de Cálcio/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Células Cultivadas , Força Compressiva/efeitos dos fármacos , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/ultraestrutura , Osteogênese/efeitos dos fármacos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA