Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nucl Med ; 64(9): 1439-1445, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348919

RESUMO

Epithelial ovarian cancer (EOC) is often asymptomatic and presents clinically in an advanced stage as widespread peritoneal microscopic disease that is generally considered to be surgically incurable. Targeted α-therapy with the α-particle-emitting radionuclide 225Ac (half-life, 9.92 d) is a high-linear-energy-transfer treatment approach effective for small-volume disease and even single cells. Here, we report the use of human epidermal growth factor receptor 2 (HER2) 225Ac-pretargeted radioimmunotherapy (PRIT) to treat a mouse model of human EOC SKOV3 xenografts growing as peritoneal carcinomatosis (PC). Methods: On day 0, 105 SKOV3 cells transduced with a luciferase reporter gene were implanted intraperitoneally in nude mice, and tumor engraftment was verified by bioluminescent imaging (BLI). On day 15, treatment was started using 1 or 2 cycles of 3-step anti-HER2 225Ac-PRIT (37 kBq/cycle as 225Ac-Proteus DOTA), separated by a 1-wk interval. Efficacy and toxicity were monitored for up to 154 d. Results: Untreated PC-tumor-bearing nude mice showed a median survival of 112 d. We used 2 independent measures of response to evaluate the efficacy of 225Ac-PRIT. First, a greater proportion of the treated mice (9/10 1-cycle and 8/10 2-cycle; total, 17/20; 85%) survived long-term compared with controls (9/27, 33%), and significantly prolonged survival was documented (log-rank [Mantel-Cox] P = 0.0042). Second, using BLI, a significant difference in the integrated BLI signal area to 98 d was noted between controls and treated groups (P = 0.0354). Of a total of 8 mice from the 2-cycle treatment group (74 kBq total) that were evaluated by necropsy, kidney radiotoxicity was mild and did not manifest itself clinically (normal serum blood urea nitrogen and creatinine). Dosimetry estimates (relative biological effectiveness-weighted dose, where relative biological effectiveness = 5) per 37 kBq administered for tumors and kidneys were 56.9 and 16.1 Gy, respectively. One-cycle and 2-cycle treatments were equally effective. With immunohistology, mild tubular changes attributable to α-toxicity were observed in both therapeutic groups. Conclusion: Treatment of EOC PC-tumor-bearing mice with anti-HER2 225Ac-PRIT resulted in histologic cures and prolonged survival with minimal toxicity. Targeted α-therapy using the anti-HER2 225Ac-PRIT system is a potential treatment for otherwise incurable EOC.


Assuntos
Neoplasias Peritoneais , Radioimunoterapia , Humanos , Animais , Camundongos , Radioimunoterapia/métodos , Camundongos Nus , Neoplasias Peritoneais/diagnóstico por imagem , Neoplasias Peritoneais/radioterapia , Neoplasias Peritoneais/tratamento farmacológico , Radioisótopos/uso terapêutico , Linhagem Celular Tumoral
2.
J Nucl Med ; 63(9): 1302-1315, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36215514

RESUMO

Pretargeted radioimmunodiagnosis and radioimmunotherapy aim to efficiently combine antitumor antibodies and medicinal radioisotopes for high-contrast imaging and high-therapeutic-index (TI) tumor targeting, respectively. As opposed to conventional radioimmunoconjugates, pretargeted approaches separate the tumor-targeting step from the payload step, thereby amplifying tumor uptake while reducing normal-tissue exposure. Alongside contrast and TI, critical parameters include antibody immunogenicity and specificity, availability of radioisotopes, and ease of use in the clinic. Each of the steps can be optimized separately; as modular systems, they can find broad applications irrespective of tumor target, tumor type, or radioisotopes. Although this versatility presents enormous opportunity, pretargeting is complex and presents unique challenges for clinical translation and optimal use in patients. The purpose of this article is to provide a brief historical perspective on the origins and development of pretargeting strategies in nuclear medicine, emphasizing 2 protein delivery systems that have been extensively evaluated (i.e., biotin-streptavidin and hapten-bispecific monoclonal antibodies), as well as radiohaptens and radioisotopes. We also highlight recent innovations, including pretargeting with bioorthogonal chemistry and novel protein vectors (such as self-assembling and disassembling proteins and Affibody molecules). We caution the reader that this is by no means a comprehensive review of the past 3 decades of pretargeted radioimmunodiagnosis and pretargeted radioimmunotherapy. But we do aim to highlight major developmental milestones and to identify benchmarks for success with regard to TI and toxicity in preclinical models and clinically. We believe this approach will lead to the identification of key obstacles to clinical success, revive interest in the utility of radiotheranostics applications, and guide development of the next generation of pretargeted theranostics.


Assuntos
Anticorpos Biespecíficos , Imunoconjugados , Neoplasias , Haptenos , Humanos , Imunoconjugados/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Radioimunoterapia/métodos , Radioisótopos
3.
Angew Chem Int Ed Engl ; 61(7): e202114203, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34889014

RESUMO

Fluorine-18 remains the most widely clinically utilized radionuclide globally for positron emission tomography (PET). The emergence of therapeutic isotopes for the management of disease has produced a pronounced interest in matched, theranostic isotope pairs that can be employed in tandem for the diagnosis and stratification of patients for subsequent radiotherapy. 18 F, however, does not have a suitable therapeutic isotopologue. Here, we demonstrate that the formation of [18 F][Sc-F] ternary complexes is feasible under mild, aqueous conditions, producing chemically robust radiopharmaceuticals in high radiochemical yield and specific activity. A corresponding in vivo study with a cancer-targeting [18 F][Sc-F] tracer indicates excellent in vivo stability and produces exquisite PET image quality, rendering the 18 F/47 Sc isotope pair an unusual, yet chemically matched theranostic pair with excellent potential for clinical translation.


Assuntos
Flúor/química , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Escândio/química , Radioisótopos de Flúor , Humanos
4.
Mol Pharm ; 18(12): 4511-4519, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34714082

RESUMO

Lu-177-based, targeted radiotherapeutics/endoradiotherapies are an emerging clinical tool for the management of various cancers. The chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) remains the workhorse for such applications but can limit apparent molar activity or efficient charge modulation, which can impact target binding and, as a consequence, target efficacy. Previously, our lab had developed the small, rare earth selective bifunctional chelator, picaga, as an efficient bifunctional chelator for scandium and lutetium isotopes. Here, we assess the performance of these constructs for therapy in prostate-specific membrane antigen (PSMA)-expressing tumor xenografts. To assess the viability of picaga conjugates in conjunction with long in vivo circulation, a picaga conjugate functionalized with a serum albumin binding moiety, 177Lu-picaga-Alb53-PSMA, was also synthesized. A directly comparative, low, single 3.7 MBq dose treatment study with Lu-PSMA-617 was conducted. Treatment with 177Lu-picaga-Alb53-PSMA resulted in tumor regression and lengthened median survival (54 days) when compared with the vehicle (16 days), 47Sc-picaga-DUPA-, 177Lu-picaga-DUPA-, and 177Lu-PSMA-617-treated cohorts (21, 23, and 21 days, respectively).


Assuntos
Quelantes/química , Dipeptídeos/uso terapêutico , Compostos Heterocíclicos com 1 Anel/uso terapêutico , Lutécio/uso terapêutico , Antígeno Prostático Específico/uso terapêutico , Neoplasias da Próstata/radioterapia , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Escândio/uso terapêutico , Animais , Dipeptídeos/farmacocinética , Compostos Heterocíclicos com 1 Anel/farmacocinética , Humanos , Masculino , Camundongos , Antígeno Prostático Específico/farmacocinética , Neoplasias da Próstata/mortalidade , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
5.
Bioconjug Chem ; 32(7): 1232-1241, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-33284001

RESUMO

The radioactive isotopes scandium-44/47 and lutetium-177 are gaining relevance for radioimaging and radiotherapy, resulting in a surge of studies on their coordination chemistry and subsequent applications. Although the trivalent ions of these elements are considered close homologues, dissimilar chemical behavior is observed when they are complexed by large ligand architectures due to discrepancies between Lu(III) and Sc(III) ions with respect to size, chemical hardness, and Lewis acidity. Here, we demonstrate that Lu and Sc complexes of 1,4-bis(methoxycarbonyl)-7-[(6-carboxypyridin-2-yl)methyl]-1,4,7-triazacyclononane (H3mpatcn) and its corresponding bioconjugate picaga-DUPA can be employed to promote analogous structural features and, subsequently, biological properties for coordination complexes of these ions. The close homology was evidenced using potentiometric methods, computational modeling, variable temperature mass spectrometry, and pair distribution function analysis of X-ray scattering data. Radiochemical labeling, in vitro stability, and biodistribution studies with Sc-47 and Lu-177 indicate that the 7-coordinate ligand environment of the bifunctional picaga ligand is compatible with biological applications and the future investigation of ß-emitting, picaga-chelated Sc and Lu isotopes for radiotherapy.


Assuntos
Quelantes/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Lutécio/química , Medicina de Precisão , Compostos Radiofarmacêuticos/química , Escândio/química , Ligantes , Estrutura Molecular
6.
Inorg Chem ; 59(22): 16095-16108, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33112609

RESUMO

A growing number of copper(II) complexes have been identified as suitable candidates for biomedical applications. Here, we show that the biocompatibility and stability of copper(II) complexes can be tuned by directed ligand design and complex geometry. We demonstrate that azamacrocycle-based chelators that envelope copper(II) in a five-coordinate, distorted trigonal-bipyramidal structure are more chemically inert to redox-mediated structural changes than their six-coordinate, Jahn-Teller-distorted counterparts, as evidenced by electrochemical, crystallographic, electron paramagnetic resonance, and density functional theory studies. We further validated our hypothesis of enhanced inertness in vitro and in vivo by employing Cu-64 radiolabeling of bifunctional analogues appended to a prostate-specific membrane antigen targeting dipeptide. The corresponding Cu-64 complexes were tested for stability in vitro and in vivo, with the five-coordinate system demonstrating the greatest metabolic stability among the studied picolinate complex series.


Assuntos
Quelantes/metabolismo , Complexos de Coordenação/metabolismo , Cobre/metabolismo , Ácidos Picolínicos/metabolismo , Quelantes/química , Complexos de Coordenação/química , Cobre/química , Cristalografia por Raios X , Teoria da Densidade Funcional , Ligantes , Modelos Moleculares , Estrutura Molecular , Oxirredução , Ácidos Picolínicos/química
7.
Chem Sci ; 11(2): 333-342, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-32953004

RESUMO

Scandium-44 has emerged as an attractive, novel PET radioisotope with ideal emission properties and half-life (t 1/2 = 3.97 h, E mean ß+ = 632 keV) well matched to the pharmacokinetics of small molecules, peptides and small biologics. Conjugates of the current gold-standard chelator for 44Sc, 1,4,7,10-tetraaza-cyclododecane-1,4,7,10-tetraacetic acid (DOTA), require heating to achieve radiochemical complexation, limiting application of this isotope in conjunction with temperature-sensitive biologics. To establish Sc(iii) isotopes as broadly applicable tools for nuclear medicine, development of alternative bifunctional chelators is required. To address this need, we characterized the Sc(iii)-chelation properties of the small-cavity triaza-macrocycle-based, picolinate-functionalized chelator H3mpatcn. Spectroscopic and radiochemical studies establish the [Sc(mpatcn)] complex as kinetically inert and appropriate for biological applications. A proof-of-concept bifunctional conjugate targeting the prostate-specific membrane antigen (PSMA), picaga-DUPA, chelates 44Sc to form 44Sc(picaga)-DUPA at room temperature with an apparent molar activity of 60 MBq µmol-1 and formation of inert RRR-Λ and SSS-Δ-twist isomers. Sc(picaga)-DUPA exhibits a K i of 1.6 nM for PSMA, comparable to the 18F-based imaging probe DCFPyL (K i = 1.1 nM) currently in phase 3 clinical trials for imaging prostate cancer. Finally, we successfully employed 44Sc(picaga)-DUPA to image PSMA-expressing tumors in a preclinical mouse model, establishing the picaga bifunctional chelator as an optimal choice for the 44Sc PET nuclide.

8.
Dalton Trans ; 49(45): 16062-16066, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32319485

RESUMO

Rhenium-based anticancer agents have arisen as promising alternatives to conventional platinum-based drugs. Based on previous studies demonstrating how increasing lipophilicity improves drug uptake within the cell, we sought to investigate the effects of lipophilicity on the anticancer activity of a series of six rhenium(i) tricarbonyl complexes. These six rhenium(i) tricarbonyl structures, called Re-Chains, bear pyridyl imine ligands with different alkyl chains ranging in length from two to twelve carbons. The cytotoxicities of these compounds were measured in HeLa cells. At long timepoints (48 h), all compounds are equally cytotoxic. At shorter time points, however, the compounds with longer alkyl chains are significantly more active than those with smaller chains. Cellular uptake studies of these compounds show that they are taken up via both passive and active pathways. Collectively, these studies show how lipophilicity affects the rate at which these Re compounds induce their biological activities.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Rênio/química , Células HeLa , Humanos , Relação Estrutura-Atividade
9.
Bioconjug Chem ; 31(4): 1177-1187, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32138509

RESUMO

Antibody-drug conjugates (ADCs) are a class of targeted therapeutics consisting of a monoclonal antibody coupled to a cytotoxic payload. Various bioconjugation methods for producing site-specific ADCs have been reported recently, in efforts to improve immunoreactivity and pharmacokinetics and minimize batch variance-potential issues associated with first-generation ADCs prepared via stochastic peptide coupling of lysines or reduced cysteines. Recently, cell-free protein synthesis of antibodies incorporating para-azidomethyl phenylalanine (pAMF) at specific locations within the protein sequence has emerged as a means to generate antibody-drug conjugates with strictly defined drug-antibody-ratio, leading to ADCs with markedly improved stability, activity, and specificity. The incorporation of pAMF enables the conjugation of payloads functionalized for strain-promoted azide-alkyne cycloaddition. Here, we introduce two dibenzylcyclooctyne-functionalized bifunctional chelators that enable the incorporation of radioisotopes for positron emission tomography with 89Zr (t1/2 = 78.4 h, ß+ = 395 keV (22%), γ = 897 keV) or single photon emission computed tomography with 111In (t1/2 = 67.3 h, γ = 171 keV (91%), 245 keV (94%)) under physiologically compatible conditions. We show that the corresponding radiolabeled conjugates with site-specifically functionalized antibodies targeting HER2 are amenable to targeted molecular imaging of HER2+ expressing tumor xenografts in mice and exhibit a favorable biodistribution profile in comparison with conventional, glycosylated antibody conjugates generated by stochastic bioconjugation.


Assuntos
Alcinos/química , Aminoácidos/química , Azidas/química , Imunoconjugados/química , Radioisótopos de Índio/química , Radioisótopos/química , Zircônio/química , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Reação de Cicloadição , Humanos , Imunoconjugados/uso terapêutico , Marcação por Isótopo , Camundongos
10.
Chemistry ; 26(6): 1238-1242, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31743504

RESUMO

We report the first targeted nuclear medicine application of the lanthanum radionuclides 132/135 La. These isotopes represent a matched pair for diagnosis via the positron emissions of 132 La and therapy mediated by the Auger electron emissions of 135 La. We identify two effective chelators, known as DO3Apic and macropa, for these radionuclides. The 18-membered macrocycle, macropa, bound 132/135 La with better molar activity than DO3Apic under similar conditions. These chelators were conjugated to the prostate-specific membrane antigen (PSMA)-targeting agent DUPA to assess the use of radiolanthanum for in vivo imaging. The 132/135 La-labeled targeted constructs showed high uptake in tumor xenografts expressing PSMA. This study validates the use of these radioactive lanthanum isotopes for imaging applications and motivates future work to assess the therapeutic effects of the Auger electron emissions of 135 La.


Assuntos
Lantânio/química , Antígeno Prostático Específico/antagonistas & inibidores , Compostos Radiofarmacêuticos/química , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Compostos Heterocíclicos com 1 Anel/química , Humanos , Masculino , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos/metabolismo , Transplante Heterólogo
11.
Inorg Chem ; 58(6): 3895-3909, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30793900

RESUMO

Combinatorial synthesis can be applied for developing a library of compounds that can be rapidly screened for biological activity. Here, we report the application of microwave-assisted combinatorial chemistry for the synthesis of 80 rhenium(I) tricarbonyl complexes bearing diimine ligands. This library was evaluated for anticancer activity in three different cancer cell lines, enabling the identification of three lead compounds with cancer cell growth-inhibitory activities of less than 10 µM. These three lead structures, Re-9B, Re-9C, and Re-9D, were synthesized independently and fully characterized by NMR spectroscopy, mass spectrometry, elemental analysis, and X-ray crystallography. The most potent of these three complexes, Re-9D, was further explored to understand its mechanism of action. Complex Re-9D is equally effective in both wild-type and cisplatin-resistant A2780 ovarian cancer cells, indicating that it circumvents cisplatin resistance. This compound was also shown to possess promising activity against ovarian cancer tumor spheroids. Additionally, flow cytometry showed that Re-9D does not induce cell cycle arrest or flipping of phosphatidylserine to the outer cell membrane. Analysis of the morphological changes of cancer cells treated with Re-9D revealed that this compound gives rise to rapid plasma membrane rupture. Collectively, these data suggest that Re-9D induces necrosis in cancer cells. To assess the in vivo biodistribution and stability of this compound, a radioactive 99mTc analogue of Re-9D, 99mTc-9D(H2O), was synthesized and administered to naïve BALB/c mice. Results of these studies indicate that 99mTc-9D(H2O) exhibits high metabolic stability and a distinct biodistribution profile. This research demonstrates that combinatorial synthesis is an effective approach for the development of new rhenium anticancer agents with advantageous biological properties.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Necrose/induzido quimicamente , Rênio/química , Rênio/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Química Combinatória/métodos , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacocinética , Cristalografia por Raios X , Resistencia a Medicamentos Antineoplásicos , Feminino , Células HeLa , Humanos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Rênio/farmacocinética , Distribuição Tecidual
12.
Mol Pharm ; 16(3): 1412-1420, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30714739

RESUMO

We report the nuclear and optical in vitro and in vivo imaging of SKOV-3 cells by targeting HER2 with a bimodal trastuzumab conjugate. Previously, we have shown that desferrichrome derivatives provide a robust and versatile radiolabeling platform for the radioisotope zirconium-89. Here, we appended silicon-rhodamine functionalized linear desferrichrome to trastuzumab. This construct was radiolabeled and used to image cellular binding and antibody uptake in vitro and in vivo. The robust extinction coefficient of the SiR deep-red emissive fluorophore enables direct quantification of the number of appended chelators and fluorophore molecules per antibody. Subsequent radiolabeling of the multifunctional immunoconjugate with 89Zr was achieved with a 64 ± 9% radiochemical yield, while the reference immunoconjugate desferrioxamine (DFO)-trastuzumab exhibited a yield of 84 ± 9%. In vivo PET imaging (24, 48, 72, and 96 h post injection) and biodistribution experiments (96 h post injection) in HER2+ tumor bearing mice revealed no statistically significant difference of the two 89Zr-labeled conjugates at each time point evaluated. The bimodal conjugate permitted successful in vivo fluorescence imaging (96 h post injection) and subsequent fluorescence-guided, surgical resection of the tumor mass. This report details the first successful application of a fluorophore-functionalized desferrichrome derivative for targeted imaging, motivating further development and application of this scaffold as a multimodal imaging platform.


Assuntos
Desferroxamina/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos/metabolismo , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Rodaminas/química , Silício/química , Trastuzumab/química , Animais , Linhagem Celular Tumoral , Quelantes/química , Feminino , Xenoenxertos , Humanos , Imunoconjugados/metabolismo , Técnicas In Vitro , Marcação por Isótopo , Camundongos , Camundongos Nus , Radioisótopos/química , Distribuição Tecidual , Zircônio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA