Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(4)2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35203270

RESUMO

ABCB4, is an adenosine triphosphate-binding cassette (ABC) transporter localized at the canalicular membrane of hepatocytes, where it mediates phosphatidylcholine secretion into bile. Gene variations of ABCB4 cause different types of liver diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3). The molecular mechanisms underlying the trafficking of ABCB4 to and from the canalicular membrane are still unknown. We identified the serine/threonine kinase Myotonic dystrophy kinase-related Cdc42-binding kinase isoform α (MRCKα) as a novel partner of ABCB4. The role of MRCKα was explored, either by expression of dominant negative mutant or by gene silencing using the specific RNAi and CRISPR-cas9 strategy in cell models. The expression of a dominant-negative mutant of MRCKα and MRCKα inhibition by chelerythrine both caused a significant increase in ABCB4 steady-state expression in primary human hepatocytes and HEK-293 cells. RNA interference and CRISPR-Cas9 knockout of MRCKα also caused a significant increase in the amount of ABCB4 protein expression. We demonstrated that the effect of MRCKα was mediated by its downstream effector, the myosin II regulatory light chain (MRLC), which was shown to also bind ABCB4. Our findings provide evidence that MRCKα and MRLC bind to ABCB4 and regulate its cell surface expression.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Colestase Intra-Hepática , Colestase , Miotonina Proteína Quinase , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Células HEK293 , Humanos , Cadeias Leves de Miosina , Miosina Tipo II , Miotonina Proteína Quinase/metabolismo
2.
Liver Int ; 41(6): 1344-1357, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33650203

RESUMO

BACKGROUND & AIM: ABCB4 is expressed at the canalicular membrane of hepatocytes. This ATP-binding cassette (ABC) transporter is responsible for the secretion of phosphatidylcholine into bile canaliculi. Missense genetic variations of ABCB4 are correlated with several rare cholestatic liver diseases, the most severe being progressive familial intrahepatic cholestasis type 3 (PFIC3). In a repurposing strategy to correct intracellularly retained ABCB4 variants, we tested 16 compounds previously validated as cystic fibrosis transmembrane conductance regulator (CFTR) correctors. METHODS: The maturation, intracellular localization and activity of intracellularly retained ABCB4 variants were analyzed in cell models after treatment with CFTR correctors. In addition, in silico molecular docking calculations were performed to test the potential interaction of CFTR correctors with ABCB4. RESULTS: We observed that the correctors C10, C13, and C17, as well as the combinations of C3 + C18 and C4 + C18, allowed the rescue of maturation and canalicular localization of four distinct traffic-defective ABCB4 variants. However, such treatments did not permit a rescue of the phosphatidylcholine secretion activity of these defective variants and were also inhibitory of the activity of wild type ABCB4. In silico molecular docking analyses suggest that these CFTR correctors might directly interact with transmembrane domains and/or ATP-binding sites of the transporter. CONCLUSION: Our results illustrate the uncoupling between the traffic and the activity of ABCB4 because the same molecules can rescue the traffic of defective variants while they inhibit the secretion activity of the transporter. We expect that this study will help to design new pharmacological tools with potential clinical interest.


Assuntos
Colestase Intra-Hepática , Colestase , Subfamília B de Transportador de Cassetes de Ligação de ATP , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Simulação de Acoplamento Molecular , Fosfatidilcolinas
3.
Sci Rep ; 9(1): 6653, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040306

RESUMO

Adenosine triphosphate binding cassette transporter, subfamily B member 4 (ABCB4) is the transporter of phosphatidylcholine at the canalicular membrane of hepatocytes. ABCB4 deficiency, due to genetic variations, is responsible for progressive familial intrahepatic cholestasis type 3 (PFIC3) and other rare biliary diseases. Roscovitine is a molecule in clinical trial that was shown to correct the F508del variant of cystic fibrosis transmembrane conductance regulator (CFTR), another ABC transporter. In the present study, we hypothesized that roscovitine could act as a corrector of ABCB4 traffic-defective variants. Using HEK and HepG2 cells, we showed that roscovitine corrected the traffic and localisation at the plasma membrane of ABCB4-I541F, a prototypical intracellularly retained variant. However, roscovitine caused cytotoxicity, which urged us to synthesize non-toxic structural analogues. Roscovitine analogues were able to correct the intracellular traffic of ABCB4-I541F in HepG2 cells. Importantly, the phospholipid secretion activity of this variant was substantially rescued by three analogues (MRT2-235, MRT2-237 and MRT2-243) in HEK cells. We showed that these analogues also triggered the rescue of intracellular traffic and function of two other intracellularly retained ABCB4 variants, i.e. I490T and L556R. Our results indicate that structural analogues of roscovitine can rescue genetic variations altering the intracellular traffic of ABCB4 and should be considered as therapeutic means for severe biliary diseases caused by this class of variations.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Retículo Endoplasmático/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Roscovitina/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Imunofluorescência , Humanos , Estrutura Molecular , Proteínas Mutantes , Inibidores de Proteínas Quinases/química , Transporte Proteico/efeitos dos fármacos , Roscovitina/análogos & derivados , Roscovitina/química
4.
Biochem Pharmacol ; 136: 1-11, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28245962

RESUMO

Human ABC (ATP Binding Cassette) transporters form a superfamily of forty-eight transmembrane proteins, which transport their substrates across biological membranes against important concentration gradients, in an energy-dependent manner. Gene variations in approximately half of these transporters have been identified in subjects with rare and often severe genetic diseases, highlighting the importance of their biological function. For missense variations leading to defects in ABC transporters, the current challenge is to identify new molecules with therapeutic potential able to rescue the induced molecular deficiency. In this review, we first address the progress provided by emerging pharmacotherapies in cystic fibrosis, the most frequent monogenic disease caused by variations of an ABC transporter, i.e. ABCC7/CFTR. Then, we enlarge the topic to the other ABC transporters, more notably to canalicular ABC transporters, the variations of which cause rare hepatobiliary diseases, and we discuss the first promising attempts aiming to correct molecular defects of these proteins.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Sistemas de Liberação de Medicamentos/tendências , Terapia Genética/tendências , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Fibrose Cística/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Terapia Genética/métodos , Variação Genética/genética , Humanos
5.
Mol Metab ; 6(1): 159-172, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28123946

RESUMO

The hypothalamic arcuate nucleus (ARC) is a major integration center for energy and glucose homeostasis that responds to leptin. Resistance to leptin in the ARC is an important component of the development of obesity and type 2 diabetes. Recently, we showed that Endospanin1 (Endo1) is a negative regulator of the leptin receptor (OBR) that interacts with OBR and retains the receptor inside the cell, leading to a decreased activation of the anorectic STAT3 pathway. Endo1 is up-regulated in the ARC of high fat diet (HFD)-fed mice, and its silencing in the ARC of lean and obese mice prevents and reverses the development of obesity. OBJECTIVE: Herein we investigated whether decreased Endo1 expression in the hypothalamic ARC, associated with reduced obesity, could also ameliorate glucose homeostasis accordingly. METHODS: We studied glucose homeostasis in lean or obese mice silenced for Endo1 in the ARC via stereotactic injection of shRNA-expressing lentiviral vectors. RESULTS: We observed that despite being leaner, Endo1-silenced mice showed impaired glucose homeostasis on HFD. Mechanistically, we show that Endo1 interacts with p85, the regulatory subunit of PI3K, and mediates leptin-induced PI3K activation. CONCLUSIONS: Our results thus define Endo1 as an important hypothalamic integrator of leptin signaling, and its silencing differentially regulates the OBR-dependent functions.


Assuntos
Proteínas de Transporte/metabolismo , Obesidade/metabolismo , Receptores para Leptina/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal/fisiologia , Proteínas de Transporte/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Leptina/metabolismo , Leptina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Receptores para Leptina/fisiologia , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Mol Cell Proteomics ; 15(12): 3624-3639, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27803151

RESUMO

Because proteins are the main mediators of most cellular processes they are also prime therapeutic targets. Identifying physical links among proteins and between drugs and their protein targets is essential in order to understand the mechanisms through which both proteins themselves and the molecules they are targeted with act. Thus, there is a strong need for sensitive methods that enable mapping out these biomolecular interactions. Here we present a robust and sensitive approach to screen proteome-scale collections of proteins for binding to proteins or small molecules using the well validated MAPPIT (Mammalian Protein-Protein Interaction Trap) and MASPIT (Mammalian Small Molecule-Protein Interaction Trap) assays. Using high-density reverse transfected cell microarrays, a close to proteome-wide collection of human ORF clones can be screened for interactors at high throughput. The versatility of the platform is demonstrated through several examples. With MAPPIT, we screened a 15k ORF library for binding partners of RNF41, an E3 ubiquitin protein ligase implicated in receptor sorting, identifying known and novel interacting proteins. The potential related to the fact that MAPPIT operates in living human cells is illustrated in a screen where the protein collection is scanned for interactions with the glucocorticoid receptor (GR) in its unliganded versus dexamethasone-induced activated state. Several proteins were identified the interaction of which is modulated upon ligand binding to the GR, including a number of previously reported GR interactors. Finally, the screening technology also enables detecting small molecule target proteins, which in many drug discovery programs represents an important hurdle. We show the efficiency of MASPIT-based target profiling through screening with tamoxifen, a first-line breast cancer drug, and reversine, an investigational drug with interesting dedifferentiation and antitumor activity. In both cases, cell microarray screens yielded known and new potential drug targets highlighting the utility of the technology beyond fundamental biology.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Proteoma/metabolismo , Análise Serial de Tecidos/métodos , Células HEK293 , Humanos , Bibliotecas de Moléculas Pequenas/metabolismo , Tamoxifeno/metabolismo
7.
Anal Biochem ; 436(1): 1-9, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23333588

RESUMO

The pleiotropic cytokine hormone leptin, by activating its receptor OB-R, plays a major role in many biological processes, including energy homeostasis, immune function, and cell survival and proliferation. Abnormal leptin action is associated with obesity, autoimmune diseases, and cancer. The pharmacological characterization of OB-R and the development of synthetic OB-R ligands are still in their infancy because currently available binding assays are not compatible with ligand saturation binding experiments and high-throughput screening (HTS) approaches. We have developed here a novel homogeneous time-resolved fluorescence-based binding assay that overcomes these limitations. In this assay, fluorescently labeled leptin or leptin antagonist binds to the SNAP-tagged OB-R covalently labeled with terbium cryptate (Tb). Successful binding is monitored by measuring the energy transfer between the Tb energy donor and the fluorescently labeled leptin energy acceptor. Ligand binding saturation experiments revealed high-affinity dissociation constants in the subnanomolar range with an excellent signal-to-noise ratio. The assay performed in a 384-well format shows high specificity and reproducibility, making it perfectly compatible with HTS applications to identify new OB-R agonists or antagonists. In addition, fluorescently labeled leptin and SNAP-tagged OB-R will be valuable tools for monitoring leptin and OB-R trafficking in cells and tissues.


Assuntos
Fluorescência , Receptores para Leptina/metabolismo , Fosfatase Alcalina/química , Fosfatase Alcalina/metabolismo , Sítios de Ligação/efeitos dos fármacos , Células Cultivadas , Células HEK293 , Ensaios de Triagem em Larga Escala , Antagonistas de Hormônios/química , Antagonistas de Hormônios/metabolismo , Antagonistas de Hormônios/farmacologia , Humanos , Leptina/antagonistas & inibidores , Leptina/química , Leptina/metabolismo , Ligantes , Ligação Proteica , Receptores para Leptina/análise , Reprodutibilidade dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA