Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38539567

RESUMO

BACKGROUND: Lung cancer is associated with a high incidence of mortality worldwide. Molecular mechanisms governing the disease have been explored by genomic studies; however, several aspects remain elusive. The integration of genomic profiling with in-depth proteomic profiling has introduced a new dimension to lung cancer research, termed proteogenomics. The aim of this review article was to investigate proteogenomic approaches in lung cancer, focusing on how elucidation of proteogenomic features can evoke tangible clinical outcomes. METHODS: A strict methodological approach was adopted for study selection and key article features included molecular attributes, tumor biomarkers, and major hallmarks involved in oncogenesis. RESULTS: As a consensus, in all studies it becomes evident that proteogenomics is anticipated to fill significant knowledge gaps and assist in the discovery of novel treatment options. Genomic profiling unravels patient driver mutations, and exploration of downstream effects uncovers great variability in transcript and protein correlation. Also, emphasis is placed on defining proteogenomic traits of tumors of major histological classes, generating a diverse portrait of predictive markers and druggable targets. CONCLUSIONS: An up-to-date synthesis of landmark lung cancer proteogenomic studies is herein provided, underpinning the importance of proteogenomics in the landscape of personalized medicine for combating lung cancer.

2.
Metabolites ; 13(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37999232

RESUMO

Ceramides are a group of sphingolipids located in the external plasma membrane layer and act as messengers in cellular pathways such as inflammatory processes and apoptosis. Plasma ceramides are biomarkers of cardiovascular disease, type 2 diabetes mellitus, Alzheimer's disease, various autoimmune conditions and cancer. During pregnancy, ceramides play an important role as stress mediators, especially during implantation, delivery and lactation. Based on the current literature, plasma ceramides could be potential biomarkers of obstetrical adverse outcomes, although their role in metabolic pathways under such conditions remains unclear. This review aims to present current studies that examine the role of ceramides during pregnancy and obstetrical adverse outcomes, such as pre-eclampsia, gestational diabetes mellitus and other complications.

3.
J Tissue Eng Regen Med ; 13(2): 342-355, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30637991

RESUMO

We used additive manufacturing to fabricate 3D-printed polycaprolactone scaffolds of different geometry topologies and porosities. We present a comparative analysis of hyaline cartilage development from adipose-tissue-derived mesenchymal stem cells (ADMSCs) on three different, newly designed scaffold geometry patterns. The first scaffold design (MESO) was based on a rectilinear layer pattern. For the second pattern (RO45), we employed a 45° rotational layer loop. The design for the third scaffold (3DHC) was a three-dimensional honeycomb-like pattern with a hexagonal cellular distribution and small square shapes. We examined cell proliferation, colonization, and differentiation, in relation to the scaffold's structure, as well as to the mechanical properties of the final constructs. We gave emphasis on the scaffolds, both microarchitecture and macroarchitecture, for optimal and enhanced chondrogenic differentiation, as an important parameter, not well studied in the literature. Among the three patterns tested, RO45 was the most favourable for chondrogenic differentiation, whereas 3DHC better supported cell proliferation and scaffold penetration, exhibiting also the highest rate of increase onto the mechanical properties of the final construct. We conclude that by choosing the optimal scaffold architecture, the resulting properties of our cartilaginous constructs can better approximate those of the physiological cartilage.


Assuntos
Tecido Adiposo/metabolismo , Bioprótese , Cartilagem Hialina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Poliésteres/química , Impressão Tridimensional , Alicerces Teciduais/química , Tecido Adiposo/citologia , Adulto , Feminino , Humanos , Cartilagem Hialina/citologia , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade
4.
Nutr Cancer ; 71(3): 491-507, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30273051

RESUMO

Crocus sativus L., a dietary herb, has been used for various diseases including cancer. This is an in vitro study investigating the antineoplastic effect of the extract of the plant against C6 glioma rat cell line. The mechanism of cellular death and the synergistic effect of the extract with the alkylating agent temozolomide (TMZ) were investigated. Cellular viability was examined in various concentrations of the extract alone or in combination with TMZ. Apoptosis was determined with flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and autophagy by western blotting of the light chain 3 (LC3)-II. Cellular viability was reduced after exposure to the extract with half maximal inhibition concentration at 3 mg/ml. Flow cytometry and TUNEL assay suggested that the extract does not induce apoptosis. Moreover, their combination increased the ratio dead/apoptotic cells 10-fold (P < 0.001). LC3-II protein levels reduced after Crocus extract while this effect was reversed when the calpain inhibitor MDL28170 was added, suggesting a calpain-dependent death possibly through autophagy. We concluded that the extract of Crocus increases dead cell number after 48 h of exposure. Our results suggest that the cell undergoes calpain-dependent programmed cell death while co-exposure to Crocus extract and TMZ enhances the antineoplastic effect of the latter.


Assuntos
Calpaína/fisiologia , Morte Celular/efeitos dos fármacos , Crocus/química , Glioma/patologia , Extratos Vegetais/farmacologia , Temozolomida/farmacologia , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Calpaína/antagonistas & inibidores , Linhagem Celular Tumoral , Dipeptídeos/farmacologia , Sinergismo Farmacológico , Glioma/tratamento farmacológico , Marcação In Situ das Extremidades Cortadas , Ratos
6.
Cell Mol Neurobiol ; 36(5): 701-12, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26239244

RESUMO

Hypoxia is the lack of sufficient oxygenation of tissue, imposing severe stress upon cells. It is a major feature of many pathological conditions such as stroke, traumatic brain injury, cerebral hemorrhage, perinatal asphyxia and can lead to cell death due to energy depletion and increased free radical generation. The present study investigates the effect of hypoxia on the unfolded protein response of the cell (UPR), utilizing a 16-h oxygen-glucose deprivation protocol (OGD) in a PC12 cell line model. Expression of glucose-regulated protein 78 (GRP78) and glucose-regulated protein 94 (GRP94), key players of the UPR, was studied along with the expression of glucose-regulated protein 75 (GRP75), heat shock cognate 70 (HSC70), and glyceraldehyde 3-phosphate dehydrogenase, all with respect to the cell death mechanism(s). Cells subjected to OGD displayed upregulation of GRP78 and GRP94 and concurrent downregulation of GRP75. These findings were accompanied with minimal apoptotic cell death and induction of autophagy. The above observation warrants further investigation to elucidate whether autophagy acts as a pro-survival mechanism that upon severe and prolonged hypoxia acts as a concerted cell response leading to cell death. In our OGD model, hypoxia modulates UPR and induces autophagy.


Assuntos
Autofagia/fisiologia , Glucose/metabolismo , Oxigênio/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Animais , Apoptose/efeitos dos fármacos , Hipóxia Celular , Sobrevivência Celular , Chaperona BiP do Retículo Endoplasmático , Neurônios/metabolismo , Células PC12 , Ratos
7.
Cell Physiol Biochem ; 37(5): 1750-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26584276

RESUMO

BACKGROUND/AIMS: Increasing amounts of the neurotransmitter glutamate are associated with excitotoxicity, a phenomenon related both to homeostatic processes and neurodegenerative diseases such as multiple sclerosis. METHODS: PC12 cells (rat pheochromocytoma) were treated with various concentrations of the non-essential amino acid glutamate for 0.5-24 hours. The effect of glutamate on cell morphology was monitored with electron microscopy and haematoxylin-eosin staining. Cell survival was calculated with the MTT assay. Expression analysis of chaperones associated with the observed phenotype was performed using either Western Blotting at the protein level or qRT-PCR at the mRNA level. RESULTS: Administration of glutamate in PC12 cells in doses as low as 10 µM causes an up-regulation of GRP78, GRP94 and HSC70 protein levels, while their mRNA levels show the opposite kinetics. At the same time, GAPDH and GRP75 show reduced protein levels, irrespective of their transcriptional rate. On a cellular level, low concentrations of glutamate induce an autophagy-mediated pro-survival phenotype, which is further supported by induction of the autophagic marker LC3. CONCLUSION: The findings in the present study underline a discrete effect of glutamate on neuronal cell fate depending on its concentration. It was also shown that a low dose of glutamate orchestrates a unique expression signature of various chaperones and induces cell autophagy, which acts in a neuroprotective fashion.


Assuntos
Autofagia/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Chaperonas Moleculares/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microscopia Eletrônica , Chaperonas Moleculares/genética , Células PC12 , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima/efeitos dos fármacos
8.
Front Cell Neurosci ; 9: 91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852482

RESUMO

Although glutamate is one of the most important excitatory neurotransmitters of the central nervous system, its excessive extracellular concentration leads to uncontrolled continuous depolarization of neurons, a toxic process called, excitotoxicity. In excitotoxicity glutamate triggers the rise of intracellular Ca(2+) levels, followed by up regulation of nNOS, dysfunction of mitochondria, ROS production, ER stress, and release of lysosomal enzymes. Excessive calcium concentration is the key mediator of glutamate toxicity through over activation of ionotropic and metabotropic receptors. In addition, glutamate accumulation can also inhibit cystine (CySS) uptake by reversing the action of the CySS/glutamate antiporter. Reversal of the antiporter action reinforces the aforementioned events by depleting neurons of cysteine and eventually glutathione's reducing potential. Various cell lines have been employed in the pursuit to understand the mechanism(s) by which excitotoxicity affects the cells leading them ultimately to their demise. In some cell lines glutamate toxicity is exerted mainly through over activation of NMDA, AMPA, or kainate receptors whereas in other cell lines lacking such receptors, the toxicity is due to glutamate induced oxidative stress. However, in the greatest majority of the cell lines ionotropic glutamate receptors are present, co-existing to CySS/glutamate antiporters and metabotropic glutamate receptors, supporting the assumption that excitotoxicity effect in these cells is accumulative. Different cell lines differ in their responses when exposed to glutamate. In this review article the responses of PC12, SH-SY5Y, HT-22, NT-2, OLCs, C6, primary rat cortical neurons, RGC-5, and SCN2.2 cell systems are systematically collected and analyzed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA