Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Front Oncol ; 10: 581814, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123485

RESUMO

Glioblastoma, the most common primary central nervous system tumor, is characterized by extensive vascular neoformation and an area of necrosis generated by rapid proliferation. The standard treatment for this type of tumor is surgery followed by chemotherapy based on temozolomide and radiotherapy, resulting in poor patient survival. Glioblastoma is known for strong resistance to treatment, frequent recurrence and rapid progression. The aim of this study was to evaluate whether mifepristone, an antihormonal agent, can enhance the effect of temozolomide on C6 glioma cells orthotopically implanted in Wistar rats. The levels of the vascular endothelial growth factor (VEGF), and P-glycoprotein (P-gp) were examined, the former a promoter of angiogenesis that facilitates proliferation, and the latter an efflux pump transporter linked to drug resistance. After a 3-week treatment, the mifepristone/temozolomide regimen had decreased the level of VEGF and P-gp and significantly reduced tumor proliferation (detected by PET/CT images based on 18F-fluorothymidine uptake). Additionally, mifepristone proved to increase the intracerebral concentration of temozolomide. The lower level of O6-methylguanine-DNA-methyltransferase (MGMT) (related to DNA repair in tumors) previously reported for this combined treatment was herein confirmed. After the mifepristone/temozolomide treatment ended, however, the values of VEGF, P-gp, and MGMT increased and reached control levels by 14 weeks post-treatment. There was also tumor recurrence, as occurred when administering temozolomide alone. On the other hand, temozolomide led to 100% mortality within 26 days after beginning the drug treatment, while mifepristone/temozolomide enabled 70% survival 60-70 days and 30% survived over 100 days, suggesting that mifepristone could possibly act as a chemo-sensitizing agent for temozolomide.

3.
Environ Health Perspect ; 124(4): 406-12, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26372663

RESUMO

BACKGROUND: Observed seasonal differences in particulate matter (PM) associations with human health may be due to their composition and to toxicity-related seasonal interactions. OBJECTIVES: We assessed seasonality in PM composition and in vitro PM pro-inflammatory potential using multiple PM samples. METHODS: We collected 90 weekly PM10 and PM2.5 samples during the rainy-warm and dry-cold seasons in five urban areas with different pollution sources. The elements, polycyclic aromatic hydrocarbons (PAHs), and endotoxins identified in the samples were subjected to principal component analysis (PCA). We tested the potential of the PM to induce tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6) secretion in cultured human monocytes (THP-1), and we modeled pro-inflammatory responses using the component scores. RESULTS: PM composition varied by size and by season. PCA identified two main components that varied by season. Combustion-related constituents (e.g., vanadium, benzo[a]pyrene, benzo[a]anthracene) mainly comprised component 1 (C1). Soil-related constituents (e.g., endotoxins, silicon, aluminum) mainly comprised component 2 (C2). PM from the rainy-warm season was high in C2. PM (particularly PM2.5) from the dry-cold season was rich in C1. Elevated levels of cytokine production were associated with PM10 and C2 (rainy-warm season), whereas reduced levels of cytokine production were associated with PM2.5 and C1 (dry-cold season). TNFα secretion was increased following exposure to PM with high (vs. low) C2 content, but TNFα secretion in response to PM was decreased following exposure to samples containing ≥ 0.1% of C1-related PAHs, regardless of C2 content. The results of the IL-6 assays suggested more complex interactions between PM components and particle size. CONCLUSIONS: Variations in PM soil and PAH content underlie seasonal and PM size-related patterns in TNFα secretion. These results suggest that the mixture of components in PM explains some seasonal differences in associations between health outcomes and PM in epidemiologic studies. CITATION: Manzano-León N, Serrano-Lomelin J, Sánchez BN, Quintana-Belmares R, Vega E, Vázquez-López I, Rojas-Bracho L, López-Villegas MT, Vadillo-Ortega F, De Vizcaya-Ruiz A, Rosas Perez I, O'Neill MS, Osornio-Vargas AR. 2016. TNFα and IL-6 responses to particulate matter in vitro: variation according to PM size, season, and polycyclic aromatic hydrocarbon and soil content. Environ Health Perspect 124:406-412; http://dx.doi.org/10.1289/ehp.1409287.


Assuntos
Poluentes Atmosféricos/toxicidade , Interleucina-6/metabolismo , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Estações do Ano , Poluentes do Solo/toxicidade , Solo/química , Fator de Necrose Tumoral alfa/metabolismo , Poluentes Atmosféricos/química , Linhagem Celular Tumoral , Cidades , Endotoxinas/toxicidade , Monitoramento Ambiental , Humanos , Metais/química , México , Tamanho da Partícula , Material Particulado/química , Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes do Solo/química
4.
J Biochem Mol Toxicol ; 27(1): 87-97, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23335408

RESUMO

Spatial variation in particulate matter-related health and toxicological outcomes is partly due to its composition. We studied spatial variability in particle composition and induced cellular responses in Mexico City to complement an ongoing epidemiologic study. We measured elements, endotoxins, and polycyclic aromatic hydrocarbons in two particle size fractions collected in five sites. We compared the in vitro proinflammatory response of J774A.1 and THP-1 cells after exposure to particles, measuring subsequent TNFα and IL-6 secretion. Particle composition varied by site and size. Particle constituents were subjected to principal component analysis, identifying three components: C(1) (Si, Sr, Mg, Ca, Al, Fe, Mn, endotoxin), C(2) (polycyclic aromatic hydrocarbons), and C(3) (Zn, S, Sb, Ni, Cu, Pb). Induced TNFα levels were higher and more heterogeneous than IL-6 levels. Cytokines produced by both cell lines only correlated with C(1) , suggesting that constituents associated with soil induced the inflammatory response and explain observed spatial differences.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Material Particulado/toxicidade , Poluentes Atmosféricos/química , Poluentes Atmosféricos/toxicidade , Animais , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/metabolismo , Cidades , Endotoxinas/análise , Monitoramento Ambiental , Humanos , Interleucina-6/metabolismo , México , Camundongos , Tamanho da Partícula , Material Particulado/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Análise de Componente Principal , Testes de Toxicidade , Fator de Necrose Tumoral alfa/metabolismo
5.
Cancer Lett ; 278(2): 192-200, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19217710

RESUMO

We describe the events triggered by a sub-lethal concentration of airborne particulate matter (PM(10)) in A549 cells, which include the formation DNA double-strand breaks, gammaH2A.X generation, and 53BP1 recruitment. To protect the genome, cells activated ATM/ATR/Chk1/Chk2/p53 pathway but, after 48 h, cells turned into a senescence-like state. Trolox, an antioxidant, was able to prevent most of the alterations observed after particulate matter exposure, demonstrating the important role of ROS as mediator of PM(10)-induced genotoxicity and suggesting that DNA damage could be the mechanisms by which particulate matter augment the risk of lung cancer.


Assuntos
Dano ao DNA , Material Particulado/toxicidade , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular , Proteínas de Ciclo Celular/análise , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/análise , Humanos , Proteínas Serina-Treonina Quinases/análise , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Proteínas Supressoras de Tumor/análise , Fosfatases cdc25/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA