Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immunol Cell Biol ; 101(2): 130-141, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36318273

RESUMO

Protein kinase D (PKD) is a serine/threonine kinase family with three isoforms (PKD1-3) that are expressed in most cells and implicated in a wide array of signaling pathways, including cell growth, differentiation, transcription, secretion, polarization and actin turnover. Despite growing interest in PKD, relatively little is known about the role of PKD in immune responses. We recently published that inhibiting PKD limits proinflammatory cytokine secretion and leukocyte accumulation in mouse models of viral infection, and that PKD3 is highly expressed in the murine lung and immune cell populations. Here we focus on the immune-related phenotypes of PKD3 knockout mice. We report that PKD3 is necessary for maximal neutrophil accumulation in the lung following challenge with inhaled polyinosinic:polycytidylic acid, a double-stranded RNA, as well as following influenza A virus infection. Using reciprocal bone marrow chimeras, we found that PKD3 is required in the hematopoietic compartment for optimal neutrophil migration to the lung. Ex vivo transwell and chemokinesis assays confirmed that PKD3-/- neutrophils possess an intrinsic motility defect, partly because of reduced surface expression of CD18, which is critical for leukocyte migration. Finally, the peak of neutrophilia was significantly reduced in PKD3-/- mice after lethal influenza A virus infection. Together, these results demonstrate that PKD3 has an essential, and nonredundant, role in promoting neutrophil recruitment to the lung. A better understanding of the isoform-specific and cell type-specific activities of PKD has the potential to lead to novel therapeutics for respiratory illnesses.


Assuntos
Neutrófilos , Proteína Quinase C , Viroses , Animais , Camundongos , Neutrófilos/metabolismo , Isoformas de Proteínas , Transdução de Sinais , Proteína Quinase C/metabolismo
2.
PLoS One ; 16(12): e0260706, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34871316

RESUMO

Airway epithelial barrier dysfunction is increasingly recognized as a key feature of asthma and other lung diseases. Respiratory viruses are responsible for a large fraction of asthma exacerbations, and are particularly potent at disrupting epithelial barrier function through pattern recognition receptor engagement leading to tight junction dysfunction. Although different mechanisms of barrier dysfunction have been described, relatively little is known about whether barrier integrity can be promoted to limit disease. Here, we tested three classes of drugs commonly prescribed to treat asthma for their ability to promote barrier function using a cell culture model of virus-induced airway epithelial barrier disruption. Specifically, we studied the corticosteroid budesonide, the long acting beta-agonist formoterol, and the leukotriene receptor antagonist montelukast for their ability to promote barrier integrity of a monolayer of human bronchial epithelial cells (16HBE) before exposure to the viral mimetic double-stranded RNA. Of the three, only budesonide treatment limited transepithelial electrical resistance and small molecule permeability (4 kDa FITC-dextran flux). Next, we used a mouse model of acute dsRNA challenge that induces transient epithelial barrier disruption in vivo, and studied the effects budesonide when administered prophylactically or therapeutically. We found that budesonide similarly protected against dsRNA-induced airway barrier disruption in the lung, independently of its effects on airway inflammation. Taken together, these data suggest that an under-appreciated effect of inhaled budesonide is to maintain or promote airway epithelial barrier integrity during respiratory viral infections.


Assuntos
Asma/tratamento farmacológico , Brônquios/efeitos dos fármacos , Broncodilatadores/farmacologia , Budesonida/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Poli I-C/antagonistas & inibidores , Acetatos/farmacologia , Administração por Inalação , Animais , Asma/induzido quimicamente , Asma/metabolismo , Asma/patologia , Brônquios/metabolismo , Brônquios/patologia , Linhagem Celular , Ciclopropanos/farmacologia , Dextranos/metabolismo , Impedância Elétrica , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Fumarato de Formoterol/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Mimetismo Molecular , Poli I-C/farmacologia , Quinolinas/farmacologia , RNA de Cadeia Dupla/antagonistas & inibidores , RNA de Cadeia Dupla/farmacologia , RNA Viral/antagonistas & inibidores , RNA Viral/farmacologia , Sulfetos/farmacologia , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
3.
PLoS One ; 14(5): e0216056, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31067281

RESUMO

The airway epithelial barrier is critical for preventing pathogen invasion and translocation of inhaled particles into the lung. Epithelial cells also serve an important sentinel role after infection and release various pro-inflammatory mediators that recruit and activate immune cells. Airway epithelial barrier disruption has been implicated in a growing number of respiratory diseases including viral infections. It is thought that when a pathogen breaks the barrier and gains access to the host tissue, pro-inflammatory mediators increase, which further disrupts the barrier and initiates a vicious cycle of leak. However, it is difficult to study airway barrier integrity in vivo, and little is known about relationship between epithelial barrier function and airway inflammation. Current assays of pulmonary barrier integrity quantify the leak of macromolecules from the vasculature into the airspaces (or "inside/out" leak). However, it is also important to measure the ease with which inhaled particles, allergens, or pathogens can enter the subepithelial tissues (or "outside/in" leak). We challenged mice with inhaled double stranded RNA (dsRNA) and explored the relationship between inside/out and outside/in barrier function and airway inflammation. Using wild-type and gene-targeted mice, we studied the roles of the dsRNA sensors Toll Like Receptor 3 (TLR3) and Melanoma Differentiation-Associated protein 5 (MDA5). Here we report that after acute challenge with inhaled dsRNA, airway barrier dysfunction occurs in a TLR3-dependent manner, whereas leukocyte accumulation is largely MDA5-dependent. We conclude that airway barrier dysfunction and inflammation are regulated by different mechanisms at early time points after exposure to inhaled dsRNA.


Assuntos
Inflamação/induzido quimicamente , Helicase IFIH1 Induzida por Interferon/fisiologia , RNA de Cadeia Dupla/farmacologia , Mucosa Respiratória/efeitos dos fármacos , Receptor 3 Toll-Like/fisiologia , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/química , Quimiocina CCL3/análise , Feminino , Inflamação/metabolismo , Inflamação/fisiopatologia , Interferon gama/análise , Interleucina-6/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA de Cadeia Dupla/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA