Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurol Genet ; 10(2): e200146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617198

RESUMO

Background and Objectives: Hexokinase 1 (encoded by HK1) catalyzes the first step of glycolysis, the adenosine triphosphate-dependent phosphorylation of glucose to glucose-6-phosphate. Monoallelic HK1 variants causing a neurodevelopmental disorder (NDD) have been reported in 12 individuals. Methods: We investigated clinical phenotypes, brain MRIs, and the CSF of 15 previously unpublished individuals with monoallelic HK1 variants and an NDD phenotype. Results: All individuals had recurrent variants likely causing gain-of-function, representing mutational hot spots. Eight individuals (c.1370C>T) had a developmental and epileptic encephalopathy with infantile onset and virtually no development. Of the other 7 individuals (n = 6: c.1334C>T; n = 1: c.1240G>A), 3 adults showed a biphasic course of disease with a mild static encephalopathy since early childhood and an unanticipated progressive deterioration with, e.g., movement disorder, psychiatric disease, and stroke-like episodes, epilepsy, starting in adulthood. Individuals who clinically presented in the first months of life had (near)-normal initial neuroimaging and severe cerebral atrophy during follow-up. In older children and adults, we noted progressive involvement of basal ganglia including Leigh-like MRI patterns and cerebellar atrophy, with remarkable intraindividual variability. The CSF glucose and the CSF/blood glucose ratio were below the 5th percentile of normal in almost all CSF samples, while blood glucose was unremarkable. This biomarker profile resembles glucose transporter type 1 deficiency syndrome; however, in HK1-related NDD, CSF lactate was significantly increased in all patients resulting in a substantially different biomarker profile. Discussion: Genotype-phenotype correlations appear to exist for HK1 variants and can aid in counseling. A CSF biomarker profile with low glucose, low CSF/blood glucose, and high CSF lactate may point toward monoallelic HK1 variants causing an NDD. This can help in variant interpretation and may aid in understanding the pathomechanism. We hypothesize that progressive intoxication and/or ongoing energy deficiency lead to the clinical phenotypes and progressive neuroimaging findings.

2.
Cureus ; 14(7): e27264, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36039216

RESUMO

Glycogen storage disease type Ib (GSD-Ib) is an autosomal-recessive inborn error of carbohydrate metabolism, where severe fasting hypoglycemia is associated (among other manifestations) with neutropenia and neutrophil dysfunction (predisposing to recurrent, potentially life-threatening infections) and inflammatory bowel disease (IBD). Granulocyte colony-stimulating factors (G-CSFs) are commonly used for its treatment. Although they have improved the prognosis of the disease, these medicines have also led to concerns about complications associated with their use (namely splenomegaly and hematopoietic malignancies), not to mention their increased cost. Recently, a novel new treatment for neutropenia associated with this disease was discovered. It was found that sodium-glucose cotransporter type 2 (SGLT-2) inhibitors, usually used for the treatment of diabetes mellitus, can ameliorate both neutropenia and IBD-related symptoms and improve the quality of life in patients suffering from these diseases. They do it by inhibiting the renal reabsorption of 1,5-anhydroglucitol, a dietary analog of glucose, whose accumulation due to the specific enzyme deficiency leads to toxic effects on granulocytes. Herein we report the treatment of an adult patient suffering from GSD-Ib with empagliflozin, an SGLT-2 inhibitor.

3.
Ital J Pediatr ; 47(1): 149, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215305

RESUMO

BACKGROUND: Besides major clinical/biochemical features, neutropenia and inflammatory bowel disease (IBD) constitute common complications of Glycogen storage disease type Ib (GSD Ib). However, their management is still challenging. Although previous reports have shown benefit of empagliflozin administration on neutropenia, no follow-up data on bowel (macro/microscopic) morphology are available. We herein present for the first time longitudinal assessment of bowel morphology in a GSD Ib child suffering from Crohn disease-like enterocolitis treated with empagliflozin. CASE PRESENTATION: A 14-year-old boy with GSD Ib and severe IBD was (off-label) treated with empagliflozin (20 mg/day) after informed oral and written consent was obtained from the patient's parents. No adverse events were noted. Clinical symptoms and stool frequency improved within the first week of treatment. Pediatric Crohn disease activity index (PCDAI) normalised within the first month of treatment. Abdomen magnetic resonance imaging (MRI) performed 3 months after treatment initiation showed dramatic decrease in disease activity and length. Similar findings were reported on histology at 5.5 months. At 7.5 months hemoglobin levels normalised and fecal calprotectin almost normalised. Improved neutrophil count, metabolic control and quality of life were also noted. G-CSF dose was decreased by 33% and the patient was partly weaned from tube feeding. CONCLUSIONS: This is the first report presenting extensive gastrointestinal morphology follow-up in a GSD Ib patient receiving empagliflozin. The present case suggests that empagliflozin can be safe and effective in inducing IBD remission in GSD Ib patients and can even postpone surgery. Future studies are required to confirm its effect over time and assess its benefit in various disease stages. The development of an international collaborating networks for systematic data collection is worthy.


Assuntos
Compostos Benzidrílicos/uso terapêutico , Doença de Crohn/tratamento farmacológico , Enterocolite/tratamento farmacológico , Glucosídeos/uso terapêutico , Doença de Depósito de Glicogênio Tipo I/complicações , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Adolescente , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Humanos , Masculino , Indução de Remissão
4.
Am J Hum Genet ; 108(6): 1151-1160, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33979636

RESUMO

We describe a genetic syndrome due to PGM2L1 deficiency. PGM2 and PGM2L1 make hexose-bisphosphates, like glucose-1,6-bisphosphate, which are indispensable cofactors for sugar phosphomutases. These enzymes form the hexose-1-phosphates crucial for NDP-sugars synthesis and ensuing glycosylation reactions. While PGM2 has a wide tissue distribution, PGM2L1 is highly expressed in the brain, accounting for the elevated concentrations of glucose-1,6-bisphosphate found there. Four individuals (three females and one male aged between 2 and 7.5 years) with bi-allelic inactivating mutations of PGM2L1 were identified by exome sequencing. All four had severe developmental and speech delay, dysmorphic facial features, ear anomalies, high arched palate, strabismus, hypotonia, and keratosis pilaris. Early obesity and seizures were present in three individuals. Analysis of the children's fibroblasts showed that glucose-1,6-bisphosphate and other sugar bisphosphates were markedly reduced but still present at concentrations able to stimulate phosphomutases maximally. Hence, the concentrations of NDP-sugars and glycosylation of the heavily glycosylated protein LAMP2 were normal. Consistent with this, serum transferrin was normally glycosylated in affected individuals. PGM2L1 deficiency does not appear to be a glycosylation defect, but the clinical features observed in this neurodevelopmental disorder point toward an important but still unknown role of glucose-1,6-bisphosphate or other sugar bisphosphates in brain metabolism.


Assuntos
Glucose-6-Fosfato/análogos & derivados , Mutação , Transtornos do Neurodesenvolvimento/patologia , Fosfotransferases/genética , Alelos , Criança , Pré-Escolar , Feminino , Glucose-6-Fosfato/biossíntese , Glicosilação , Humanos , Masculino , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Linhagem
5.
J Clin Immunol ; 41(5): 958-966, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33534079

RESUMO

Phosphoglucomutase 3 (PGM3) deficiency is a rare congenital disorder of glycosylation. Most of patients with autosomal recessive hypomorphic mutations in PGM3 encoding for phosphoglucomutase 3 present with eczema, skin and lung infections, elevated serum IgE, as well as neurological and skeletal features. A few PGM3-deficient patients suffer from a more severe disease with nearly absent T cells and severe skeletal dysplasia. We performed targeted next-generation sequencing on two kindred to identify the underlying genetic etiology of a severe combined immunodeficiency with developmental defect. We report here two novel homozygous missense variants (p.Gly359Asp and p.Met423Thr) in PGM3 identified in three patients from two unrelated kindreds with severe combined immunodeficiency, neurological impairment, and skeletal dysplasia. Both variants segregated with the disease in the two families. They were predicted to be deleterious by in silico analysis. PGM3 enzymatic activity was found to be severely impaired in primary fibroblasts and Epstein-Barr virus immortalized B cells from the kindred carrying the p.Met423Thr variant. Our findings support the pathogenicity of these two novel variants in severe PGM3 deficiency.


Assuntos
Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/genética , Deformidades Congênitas dos Membros/genética , Doenças do Sistema Nervoso/genética , Fosfoglucomutase/genética , Imunodeficiência Combinada Severa/genética , Pré-Escolar , Face/anormalidades , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
6.
Elife ; 72018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30526847

RESUMO

Protein histidine methylation is a rare post-translational modification of unknown biochemical importance. In vertebrates, only a few methylhistidine-containing proteins have been reported, including ß-actin as an essential example. The evolutionary conserved methylation of ß-actin H73 is catalyzed by an as yet unknown histidine N-methyltransferase. We report here that the protein SETD3 is the actin-specific histidine N-methyltransferase. In vitro, recombinant rat and human SETD3 methylated ß-actin at H73. Knocking-out SETD3 in both human HAP1 cells and in Drosophila melanogaster resulted in the absence of methylation at ß-actin H73 in vivo, whereas ß-actin from wildtype cells or flies was > 90% methylated. As a consequence, we show that Setd3-deficient HAP1 cells have less cellular F-actin and an increased glycolytic phenotype. In conclusion, by identifying SETD3 as the actin-specific histidine N-methyltransferase, our work pioneers new research into the possible role of this modification in health and disease and questions the substrate specificity of SET-domain-containing enzymes.


Assuntos
Actinas/metabolismo , Fibroblastos/enzimologia , Histona-Lisina N-Metiltransferase/genética , Músculo Esquelético/enzimologia , Processamento de Proteína Pós-Traducional , Actinas/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Sequência Conservada , Drosophila melanogaster/classificação , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Fibroblastos/citologia , Glicólise/genética , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/farmacologia , Humanos , Cinética , Metilação , Modelos Moleculares , Músculo Esquelético/química , Fenótipo , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
7.
Proc Natl Acad Sci U S A ; 114(16): E3233-E3242, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28373563

RESUMO

The mammalian gene Nit1 (nitrilase-like protein 1) encodes a protein that is highly conserved in eukaryotes and is thought to act as a tumor suppressor. Despite being ∼35% sequence identical to ω-amidase (Nit2), the Nit1 protein does not hydrolyze efficiently α-ketoglutaramate (a known physiological substrate of Nit2), and its actual enzymatic function has so far remained a puzzle. In the present study, we demonstrate that both the mammalian Nit1 and its yeast ortholog are amidases highly active toward deaminated glutathione (dGSH; i.e., a form of glutathione in which the free amino group has been replaced by a carbonyl group). We further show that Nit1-KO mutants of both human and yeast cells accumulate dGSH and the same compound is excreted in large amounts in the urine of Nit1-KO mice. Finally, we show that several mammalian aminotransferases (transaminases), both cytosolic and mitochondrial, can form dGSH via a common (if slow) side-reaction and provide indirect evidence that transaminases are mainly responsible for dGSH formation in cultured mammalian cells. Altogether, these findings delineate a typical instance of metabolite repair, whereby the promiscuous activity of some abundant enzymes of primary metabolism leads to the formation of a useless and potentially harmful compound, which needs a suitable "repair enzyme" to be destroyed or reconverted into a useful metabolite. The need for a dGSH repair reaction does not appear to be limited to eukaryotes: We demonstrate that Nit1 homologs acting as excellent dGSH amidases also occur in Escherichia coli and other glutathione-producing bacteria.


Assuntos
Aminoidrolases/metabolismo , Glutationa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transaminases/metabolismo , Aminoidrolases/fisiologia , Animais , Desaminação , Humanos , Hidrólise , Camundongos , Camundongos Knockout , Especificidade por Substrato
8.
FEBS J ; 281(6): 1585-97, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24467666

RESUMO

Mammalian ACSF4-U26 (Acyl CoA synthetase family member 4), a protein of unknown function, comprises a putative adenylation domain (AMP-binding domain) similar to those of bacterial non-ribosomal peptide synthetases, a putative phosphopantetheine attachment site, and a C-terminal PQQDH (pyrroloquinoline quinone dehydrogenase)-related domain. Orthologues comprising these three domains are present in many eukaryotes including plants. Remarkably, the adenylation domain of plant ACSF4-U26 show greater identity with Ebony, the insect enzyme that ligates ß-alanine to several amines, than with vertebrate or insect ACSF4-U26, and prediction of its specificity suggests that it activates ß-alanine. In the presence of ATP, purified mouse recombinant ACSF4-U26 progressively formed a covalent bond with radiolabelled ß-alanine. The bond was not formed in a point mutant lacking the phosphopantetheine attachment site. Competition experiments with various amino acids indicated that the reaction was almost specific for ß-alanine, and a KM of ~ 5 µm was calculated for this reaction. The loaded enzyme was used to study the formation of a potential end product. Among the 20 standard amino acids, only cysteine stimulated unloading of the enzyme. This effect was mimicked by cysteamine and dithiothreitol, and was unaffected by absence of the PQQDH-related domain, suggesting that ß-alanine transfer onto thiols is catalysed by the ACSF4-U26 adenylation domain, but is physiologically irrelevant. We conclude that ACSF4-U26 is a ß-alanine-activating enzyme, and hypothesize that it is involved in a rare intracellular reaction, possibly an infrequent post-translational or post-transcriptional modification.


Assuntos
Coenzima A Ligases/química , Coenzima A Ligases/metabolismo , beta-Alanina/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico/genética , Coenzima A Ligases/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , L-Aminoadipato-Semialdeído Desidrogenase , Camundongos , Mutagênese Sítio-Dirigida , Peptídeo Sintases/química , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
9.
J Biol Chem ; 285(24): 18888-98, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20392701

RESUMO

Our goal was to identify the reaction catalyzed by NAT8 (N-acetyltransferase 8), a putative N-acetyltransferase homologous to the enzyme (NAT8L) that produces N-acetylaspartate in brain. The almost exclusive expression of NAT8 in kidney and liver and its predicted association with the endoplasmic reticulum suggested that it was cysteinyl-S-conjugate N-acetyltransferase, the microsomal enzyme that catalyzes the last step of mercapturic acid formation. In agreement, HEK293T extracts of cells overexpressing NAT8 catalyzed the N-acetylation of S-benzyl-L-cysteine and leukotriene E(4), two cysteine conjugates, but were inactive on other physiological amines or amino acids. Confocal microscopy indicated that NAT8 was associated with the endoplasmic reticulum. Neither of the two frequent single nucleotide polymorphisms found in NAT8, E104K nor F143S, changed the enzymatic activity or the expression of the protein by >or=2-fold, whereas a mutation (R149K) replacing an extremely conserved arginine suppressed the activity. Sequencing of genomic DNA and EST clones corresponding to the NAT8B gene, which resulted from duplication of the NAT8 gene in the primate lineage, disclosed the systematic presence of a premature stop codon at codon 16. Furthermore, truncated NAT8B and NAT8 proteins starting from the following methionine (Met-25) showed no cysteinyl-S-conjugate N-acetyltransferase activity when transfected in HEK293T cells. Taken together, these findings indicate that NAT8 is involved in mercapturic acid formation and confirm that NAT8B is an inactive gene in humans. NAT8 homologues are found in all vertebrate genomes, where they are often encoded by multiple, tandemly repeated genes as many other genes encoding xenobiotic metabolism enzymes.


Assuntos
Acetilcisteína/química , Acetiltransferases/química , Cisteína/química , Acetilcoenzima A/química , Acetilação , Acetiltransferases/genética , Linhagem Celular , Códon de Terminação , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Microscopia Confocal , Mutação , Polimorfismo de Nucleotídeo Único , Xenobióticos/química
10.
J Biol Chem ; 285(13): 9346-9356, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20097752

RESUMO

Carnosine (beta-alanyl-L-histidine) and homocarnosine (gamma-aminobutyryl-L-histidine) are abundant dipeptides in skeletal muscle and brain of most vertebrates and some invertebrates. The formation of both compounds is catalyzed by carnosine synthase, which is thought to convert ATP to AMP and inorganic pyrophosphate, and whose molecular identity is unknown. In the present work, we have purified carnosine synthase from chicken pectoral muscle about 1500-fold until only two major polypeptides of 100 and 90 kDa were present in the preparation. Mass spectrometry analysis of these polypeptides did not yield any meaningful candidate. Carnosine formation catalyzed by the purified enzyme was accompanied by a stoichiometric formation, not of AMP, but of ADP, suggesting that carnosine synthase belongs to the "ATP-grasp family" of ligases. A data base mining approach identified ATPGD1 as a likely candidate. As this protein was absent from chicken protein data bases, we reconstituted its sequence from a PCR-amplified cDNA and found it to fit with the 100-kDa polypeptide of the chicken carnosine synthase preparation. Mouse and human ATPGD1 were expressed in HEK293T cells, purified to homogeneity, and shown to catalyze the formation of carnosine, as confirmed by mass spectrometry, and of homocarnosine. Specificity studies carried out on all three enzymes were in agreement with published data. In particular, they acted with 15-25-fold higher catalytic efficiencies on beta-alanine than on gamma-aminobutyrate. The identification of the gene encoding carnosine synthase will help for a better understanding of the biological functions of carnosine and related dipeptides, which still remain largely unknown.


Assuntos
Trifosfato de Adenosina/química , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Monofosfato de Adenosina/metabolismo , Alanina/química , Sequência de Aminoácidos , Animais , Carnosina/metabolismo , Linhagem Celular , Galinhas , Humanos , Espectrometria de Massas/métodos , Camundongos , Dados de Sequência Molecular , Peptídeos/química , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Ácido gama-Aminobutírico/química
11.
Biochimie ; 91(9): 1066-71, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19596042

RESUMO

Our purpose was to identify the sequence of omega-amidase, which hydrolyses the amide group of alpha-ketoglutaramate, a product formed by glutamine transaminases. In the Bacillus subtilis genome, the gene encoding a glutamine transaminase (mtnV) is flanked by a gene encoding a putative 'carbon-nitrogen hydrolase'. The closest mammalian homolog of this putative bacterial omega-amidase is 'nitrilase 2', whose size and amino acid composition were in good agreement with those reported for purified rat liver omega-amidase. Mouse nitrilase 2 was expressed in Escherichia coli, purified and shown to catalyse the hydrolysis of alpha-ketoglutaramate and other known substrates of omega-amidase. No such activity was observed with mouse nitrilase 1. We conclude that mammalian nitrilase 2 is omega-amidase.


Assuntos
Amidoidrolases/metabolismo , Aminoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Transaminases/metabolismo , Amidoidrolases/química , Amidoidrolases/genética , Sequência de Aminoácidos , Aminoidrolases/química , Aminoidrolases/genética , Animais , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Western Blotting , Linhagem Celular , Biologia Computacional , Bases de Dados Genéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano/genética , Humanos , Ácidos Cetoglutáricos/metabolismo , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Transaminases/química , Transaminases/genética
12.
J Biol Chem ; 282(44): 31844-51, 2007 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17804405

RESUMO

The molecular identity of mammalian phosphopentomutase has not yet been established unequivocally. That of glucose-1,6-bisphosphate synthase, the enzyme that synthesizes a cofactor for phosphomutases and putative regulator of glycolysis, is completely unknown. In the present work, we have purified phosphopentomutase from human erythrocytes and found it to copurify with a 68-kDa polypeptide that was identified by mass spectrometry as phosphoglucomutase 2 (PGM2), a protein of the alpha-d-phosphohexomutase family and sharing about 20% identity with mammalian phosphoglucomutase 1. Data base searches indicated that vertebrate genomes contained, in addition to PGM2, a homologue (PGM2L1, for PGM2-like 1) sharing about 60% sequence identity with this protein. Both PGM2 and PGM2L1 were overexpressed in Escherichia coli, purified, and their properties were studied. Using catalytic efficiency as a criterion, PGM2 acted more than 10-fold better as a phosphopentomutase (both on deoxyribose 1-phosphate and on ribose 1-phosphate) than as a phosphoglucomutase. PGM2L1 showed only low (<5%) phosphopentomutase and phosphoglucomutase activities compared with PGM2, but was about 5-20-fold better than the latter enzyme in catalyzing the 1,3-bisphosphoglycerate-dependent synthesis of glucose 1,6-bisphosphate and other aldose-bisphosphates. Furthermore, quantitative real-time PCR analysis indicated that PGM2L1 was mainly expressed in brain where glucose-1,6-bisphosphate synthase activity was previously shown to be particularly high. We conclude that mammalian phosphopentomutase and glucose-1,6-bisphosphate synthase correspond to two closely related proteins, PGM2 and PGM2L1, encoded by two genes that separated early in vertebrate evolution.


Assuntos
Eritrócitos/enzimologia , Fosfotransferases/química , Sequência de Aminoácidos , Animais , Evolução Molecular , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Especificidade de Órgãos , Fosfotransferases/genética , Fosfotransferases/isolamento & purificação , Fosfotransferases/metabolismo
13.
Biochem J ; 399(2): 257-64, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16819943

RESUMO

Amines, including those present on proteins, spontaneously react with glucose to form fructosamines in a reaction known as glycation. In the present paper, we have explored, through a targeted gene inactivation approach, the role of FN3K (fructosamine 3-kinase), an intracellular enzyme that phosphorylates free and protein-bound fructose-epsilon-lysines and which is potentially involved in protein repair. Fn3k-/- mice looked healthy and had normal blood glucose and serum fructosamine levels. However, their level of haemoglobin-bound fructosamines was approx. 2.5-fold higher than that of control (Fn3k+/+) or Fn3k+/- mice. Other intracellular proteins were also significantly more glycated in Fn3k-/- mice in erythrocytes (1.8-2.2-fold) and in brain, kidney, liver and skeletal muscle (1.2-1.8-fold), indicating that FN3K removes fructosamines from intracellular proteins in vivo. The urinary excretion of free fructose-epsilon-lysine was 10-20-fold higher in fed mice compared with mice starved for 36 h, and did not differ between fed Fn3k+/+ and Fn3k-/- mice, indicating that food is the main source of urinary fructose-epsilon-lysine in these mice and that FN3K does not participate in the metabolism of food-derived fructose-epsilon-lysine. However, in starved animals, the urinary excretion of fructose-epsilon-lysine was 2.5-fold higher in Fn3k-/- mice compared with Fn3k+/+ or Fn3k+/- mice. Furthermore, a marked increase (5-13-fold) was observed in the concentration of free fructose-epsilon-lysine in tissues of fed Fn3k-/- mice compared with control mice, indicating that FN3K participates in the metabolism of endogenously produced fructose-epsilon-lysine. Taken together, these data indicate that FN3K serves as a protein repair enzyme and also in the metabolism of endogenously produced free fructose-epsilon-lysine.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Hemoglobinas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Animais , Cromatografia Líquida de Alta Pressão , Citosol/enzimologia , Eritrócitos/enzimologia , Éxons/genética , Feminino , Marcação de Genes , Glicosilação , Lisina/análogos & derivados , Lisina/urina , Masculino , Camundongos , Camundongos Knockout , Peptídeos/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
14.
Biochem J ; 381(Pt 1): 35-42, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15070399

RESUMO

Extracts of frozen rat liver were found to catalyse the formation of 3H2O from DL-2-hydroxy[2-3H]glutarate. Three peaks of enzyme activities were observed on separation by chromatography on DEAE-Sepharose. The first and second peaks corresponded to an enzyme acting on L-2-hydroxyglutarate and the third peak corresponded to an enzyme acting on D-2-hydroxyglutarate, as indicated by competitive inhibition of the detritiation of the racemic radioactive compound by the unlabelled L- and D-isomers respectively. The enzyme acting on the D-form was further characterized. It was independent of NAD or NADP and it converted D-2-hydroxyglutarate into a-ketoglutarate, transferring electrons to artificial electron acceptors. It also oxidized D-lactate, D-malate and meso-tartrate and was stimulated by Zn2+, Co2+ and Mn2+, but not by Mg2+ or Ca2+. Subcellular fractionation indicated that it was present in the mitochondrial fraction. The enzyme was further purified by chromatography on Blue Trisacryl and phenyl-Sepharose, up to a stage where only a few bands were still visible by SDS/PAGE. Among the four candidate polypeptides that were identified by MS, one corresponded to a predicted mitochondrial protein homologous with FAD-dependent D-lactate dehydrogenase. The corresponding human protein was expressed in HEK-293 cells and it was shown to catalyse the detritiation of DL-2-hydroxy[2-3H]glutarate with similar properties as the purified rat enzyme.


Assuntos
Glutaratos/metabolismo , Oxirredutases/metabolismo , Sequência de Aminoácidos , Animais , Cromatografia em Agarose/métodos , Etanolaminas/metabolismo , Humanos , Rim/citologia , Rim/embriologia , Rim/enzimologia , Fígado/química , Fígado/enzimologia , Extratos Hepáticos/química , Camundongos , Dados de Sequência Molecular , Oxirredutases/biossíntese , Oxirredutases/química , Ratos , Proteínas de Saccharomyces cerevisiae/química , Alinhamento de Sequência/métodos
15.
J Biol Chem ; 277(10): 8466-73, 2002 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-11756407

RESUMO

Glucokinase is inhibited in the liver by a regulatory protein (GKRP) whose effects are increased by Fru-6-P and suppressed by Fru-1-P. To identify the binding site of these phosphate esters, we took advantage of the homology of GKRP to the isomerase domain of GlmS (glucosamine-6-phosphate synthase) and created 12 different mutants of rat GKRP. Mutations of three residues predicted to bind to Fru-6-P resulted in proteins that were approximately 5-fold (S110A) and 50-fold (S179A and K514A) less potent as inhibitors of glucokinase and had an at least 100-fold reduced affinity for the effectors. Mutation of another residue of the putative binding site (T109A) resulted in a 10-fold decrease in the inhibitory power and an inversion of the effect of sorbitol-6-P, a Fru-6-P analog. The replacement of Gly(107), a residue close to the binding site, by cysteine (as in GlmS and Xenopus GKRP) resulted in a protein that had 20 times more affinity for Fru-6-P and 30 times less affinity for Fru-1-P. These results are consistent with GKRP having one single binding site for phosphate esters. They also show that a missense mutation of GKRP can lead to a gain of function.


Assuntos
Frutosefosfatos/metabolismo , Glucoquinase/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Clonagem Molecular , Cisteína/química , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Glucoquinase/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/química , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Glicina/química , Humanos , Cinética , Fígado/enzimologia , Dados de Sequência Molecular , Mutagênese , Mutagênese Sítio-Dirigida , Mutação , Mutação de Sentido Incorreto , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Sorbitol/farmacologia , Especificidade por Substrato , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA