Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 9(3): 1391-1401, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36821424

RESUMO

Fullerenes and metallofullerenes play an active role in homeostasis of reactive oxygen species and may cause oxidative damage to cells. As pristine fullerenes are a basis for derivatization, studying oxidative DNA damage/repair and apoptosis is important in terms of genotoxicity and cytotoxicity for their biomedical application. Aqueous dispersions of C60, C70, and Gd@C82 (5 nM and 1.5 µM) were cultured with human fetal lung fibroblasts for 1, 3, 24, and 72 h. Oxidative DNA damage/repair was assessed through concentration of 8-oxodG, double-strand breaks, and activation of BRCA1. Activity of apoptosis was assessed through the BCL2/BAX ratio. All three fullerenes caused oxidative modification of DNA at the early stages; C60 caused the most long-term damage, Gd@C82 caused the most short-term damage, and C70 caused "wave-like" dynamics. The dynamics of DNA repair correlated with the dynamics of oxidative damage, but Gd@C82 caused more prolonged activation of the repair system than C60 or C70. The oxidative toxicity of Gd@C82, is minor and the oxidative toxicity of C60 is mild and short-term, in contrast to C70. In relation to the studied effects, the fullerenes can be arranged in a safety row of Gd@C82 > C60 > C70.


Assuntos
Fulerenos , Humanos , Fulerenos/farmacologia , Estresse Oxidativo , Pulmão , Reparo do DNA , Apoptose , Fibroblastos
2.
Genes (Basel) ; 13(12)2022 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-36553550

RESUMO

Oxidized in vitro genomic DNA (gDNA) is known to launch an adaptive response in human cell cultures. The cfDNA extracted from the plasma of schizophrenic patients (sz-cfDNA) and healthy controls (hc-cfDNA) contains increased amounts of 8-oxodG, a DNA-oxidation marker. The aim of the research was answering a question: can the human cfDNA isolated from blood plasma stimulate the adaptive response in human cells? In vitro responses of ten human skin fibroblasts (HSFs) and four peripheral blood mononuclear cell (PBMC) lines after 1-24 h of incubation with sz-cfDNA, gDNA and hc-cfDNA containing different amounts of 8-oxodG were examined. Expressions of RNA of eight genes (NOX4, NFE2L2, SOD1, HIF1A, BRCA1, BRCA2, BAX and BCL2), six proteins (NOX4, NRF2, SOD1, HIF1A, γH2AX and BRCA1) and DNA-oxidation marker 8-oxodG were analyzed by RT-qPCR and flow cytometry (when analyzing the data, a subpopulation of lymphocytes (PBL) was identified). Adding hc-cfDNA or sz-cfDNA to HSFs or PBMC media in equal amounts (50 ng/mL, 1-3 h) stimulated transient synthesis of free radicals (ROS), which correlated with an increase in the expressions of NOX4 and SOD1 genes and with an increase in the levels of the markers of DNA damage γH2AX and 8-oxodG. ROS and DNA damage induced an antioxidant response (expression of NFE2L2 and HIF1A), DNA damage response (BRCA1 and BRCA2 gene expression) and anti-apoptotic response (changes in BAX and BCL2 genes expression). Heterogeneity of cells of the same HSFs or PBL population was found with respect to the type of response to (sz,hc)-cfDNA. Most cells responded to oxidative stress with an increase in the amount of NRF2 and BRCA1 proteins along with a moderate increase in the amount of NOX4 protein and a low amount of 8-oxodG oxidation marker. However, upon the exposure to (sz,hc)-cfDNA, the size of the subpopulation with apoptosis signs (high DNA damage degree, high NOX4 and low NRF2 and BRCA1 levels) also increased. No significant difference between the responses to sz-cfDNA and hc-cfDNA was observed. Sz-cfDNA and hc-cfDNA showed similarly high bioactivity towards fibroblasts and lymphocytes. Conclusion: In cultured human cells, hc-cfDNA and sz-cfDNA equally stimulated an adaptive response aimed at launching the antioxidant, repair, and anti-apoptotic processes. The mediator of the development of the adaptive response are ROS produced by, among others, NOX4 and SOD1 enzymes.


Assuntos
Ácidos Nucleicos Livres , Esquizofrenia , Humanos , Leucócitos Mononucleares/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Antioxidantes , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Superóxido Dismutase-1 , Proteína X Associada a bcl-2 , DNA , Esquizofrenia/genética , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/metabolismo , Plasma/metabolismo
3.
PLoS One ; 17(6): e0269130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35696356

RESUMO

INTRODUCTION: Increased systemic oxidative stress is common in schizophrenia (SZ) patients. NADPH-oxidase 4 (NOX4) is the cell oxidoreductase, catalyzing the hydrogen peroxide formation. Presumably, NOX4 is the main oxidative stress factor in a number of diseases such as cardiovascular diseases and cancer. We hypothesized that NOX4 may be involved in the oxidative stress development caused by the disease in the schizophrenic patients' peripheral blood lymphocytes (PBL). MATERIALS AND METHODS: The SZ group included 100 patients (68 men and 32 women aged 28 ± 11 years). The control group included 60 volunteers (35 men and 25 women aged 25 ± 12 years). Flow cytometry analysis (FCA) was used for DNA damage markers (8-oxodG, É£H2AX), pro- and antiapoptotic proteins (BAX1 and BCL2) and the master-regulator of anti-oxidant response NRF2 detection in the lymphocytes of the untreated SZ patients (N = 100) and the healthy control (HC, N = 60). FCA and RT-qPCR were used for NOX4 and RNANOX4 detection in the lymphocytes. RT-qPCR was used for mtDNA quantitation in peripheral blood mononuclear cells. Cell-free DNA concentration was determined in blood plasma fluorimetrically. RESULTS: 8-oxodG, NOX4, and BCL2 levels in the PBL in the SZ group were higher than those in the HC group (p < 0.001). É£H2AX protein level was increased in the subgroup with high 8-oxodG (p<0.02) levels and decreased in the subgroup with low 8-oxodG (p <0.0001) levels. A positive correlation was found between 8-oxodG, É£H2AX and BAX1 levels in the SZ group (p <10-6). NOX4 level in lymphocytes did not depend on the DNA damage markers values and BAX1 and BCL2 proteins levels. In 15% of PBL of the HC group a small cellular subfraction was found (5-12% of the total lymphocyte pool) with high DNA damage level and elevated BAX1 protein level. The number of such cells was maximal in PBL samples with low NOX4 protein levels. CONCLUSION: Significant NOX4 gene expression was found a in SZ patients' lymphocytes, but the corresponding protein is probably not a cause of the DNA damage.


Assuntos
NADPH Oxidase 4/metabolismo , Esquizofrenia , 8-Hidroxi-2'-Desoxiguanosina , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Linfócitos/metabolismo , Masculino , NADP/metabolismo , NADPH Oxidase 4/genética , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo
4.
Genes (Basel) ; 12(10)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34680920

RESUMO

The pericentric satellite III (SatIII or Sat3) and II tandem repeats recently appeared to be transcribed under stress conditions, and the transcripts were shown to play an essential role in the universal stress response. In this paper, we review the role of human-specific SatIII copy number variation (CNV) in normal stress response, aging and pathology, with a focus on 1q12 loci. We postulate a close link between transcription of SatII/III repeats and their CNV. The accrued body of data suggests a hypothetical universal mechanism, which provides for SatIII copy gain during the stress response, alongside with another, more hypothetical reverse mechanism that might reduce the mean SatIII copy number, likely via the selection of cells with excessively large 1q12 loci. Both mechanisms, working alternatively like swings of the pendulum, may ensure the balance of SatIII copy numbers and optimum stress resistance. This model is verified on the most recent data on SatIII CNV in pathology and therapy, aging, senescence and response to genotoxic stress in vitro.


Assuntos
Envelhecimento/genética , Variações do Número de Cópias de DNA , DNA Satélite/genética , Neoplasias/genética , Humanos , Estresse Fisiológico
5.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502190

RESUMO

Inductors of myogenic stem cell differentiation attract attention, as they can be used to treat myodystrophies and post-traumatic injuries. Functionalization of fullerenes makes it possible to obtain water-soluble derivatives with targeted biochemical activity. This study examined the effects of the phosphonate C60 fullerene derivatives on the expression of myogenic transcription factors and myogenic differentiation of human mesenchymal stem cells (MSCs). Uptake of the phosphonate C60 fullerene derivatives in human MSCs, intracellular ROS visualization, superoxide scavenging potential, and the expression of myogenic, adipogenic, and osteogenic differentiation genes were studied. The prolonged MSC incubation (within 7-14 days) with the C60 pentaphoshonate potassium salt promoted their differentiation towards the myogenic lineage. The transcription factors and gene expressions determining myogenic differentiation (MYOD1, MYOG, MYF5, and MRF4) increased, while the expression of osteogenic differentiation factors (BMP2, BMP4, RUNX2, SPP1, and OCN) and adipogenic differentiation factors (CEBPB, LPL, and AP2 (FABP4)) was reduced or did not change. The stimulation of autophagy may be one of the factors contributing to the increased expression of myogenic differentiation genes in MSCs. Autophagy may be caused by intracellular alkalosis and/or short-term intracellular oxidative stress.


Assuntos
Fulerenos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Desenvolvimento Muscular , Autofagia , Diferenciação Celular , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Proteína MyoD/genética , Fator Regulador Miogênico 5/genética , Miogenina/genética , Espécies Reativas de Oxigênio/metabolismo
6.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35008689

RESUMO

The concept of hormesis describes a phenomenon of adaptive response to low-dose ionizing radiation (LDIR). Similarly, the concept of mitohormesis states that the adaptive program in mitochondria is activated in response to minor stress effects. The mechanisms of hormesis effects are not clear, but it is assumed that they can be mediated by reactive oxygen species. Here, we studied effects of LDIR on mitochondria in mesenchymal stem cells. We have found that X-ray radiation at a dose of 10 cGy as well as oxidized fragments of cell-free DNA (cfDNA) at a concentration of 50 ng/mL resulted in an increased expression of a large number of genes regulating the function of the mitochondrial respiratory chain complexes in human mesenchymal stem cells (MSC). Several genes remained upregulated within hours after the exposure. Both X-ray radiation and oxidized cfDNA resulted in upregulation of FIS1 and MFN1 genes, which regulated fusion and fission of mitochondria, within 3-24 h after the exposure. Three hours after the exposure, the number of copies of mitochondrial DNA in cells had increased. These findings support the hypothesis that assumes oxidized cell-free DNA as a mediator of MSC response to low doses of radiation.


Assuntos
Regulação da Expressão Gênica/efeitos da radiação , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos da radiação , Mitocôndrias/genética , Mitocôndrias/efeitos da radiação , Radiação Ionizante , Ácidos Nucleicos Livres/metabolismo , DNA Mitocondrial/genética , Relação Dose-Resposta à Radiação , Transporte de Elétrons , Dosagem de Genes , Genes Mitocondriais , Humanos , Potencial da Membrana Mitocondrial , Dinâmica Mitocondrial , Oxirredução/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica , Raios X
7.
PLoS One ; 13(1): e0189826, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29329300

RESUMO

BACKGROUND: Hypermethylation is observed in the promoter regions of suppressor genes in the tumor cancer cells. Reactivation of these genes by demethylation of their promoters is a prospective strategy of the anticancer therapy. Previous experiments have shown that symmetric dimeric bisbenzimidazoles DBP(n) are able to block DNA methyltransferase activities. It was also found that DBP(n) produces a moderate effect on the activation of total gene expression in HeLa-TI population containing epigenetically repressed avian sarcoma genome. PRINCIPAL FINDINGS: It is shown that DBP(n) are able to penetrate the cellular membranes and accumulate in breast carcinoma cell MCF-7, mainly in the mitochondria and in the nucleus, excluding the nucleolus. The DBP(n) are non-toxic to the cells and have a weak overall demethylation effect on genomic DNA. DBP(n) demethylate the promoter regions of the tumor suppressor genes PTEN and RARB. DBP(n) promotes expression of the genes RARB, PTEN, CDKN2A, RUNX3, Apaf-1 and APC "silent" in the MCF-7 because of the hypermethylation of their promoter regions. Simultaneously with the demethylation of the DNA in the nucleus a significant increase in the methylation level of rRNA genes in the nucleolus was detected. Increased rDNA methylation correlated with a reduction of the rRNA amount in the cells by 20-30%. It is assumed that during DNA methyltransferase activity inhibition by the DBP(n) in the nucleus, the enzyme is sequestered in the nucleolus and provides additional methylation of the rDNA that are not shielded by DBP(n). CONCLUSIONS/SIGNIFICANCE: It is concluded that DBP (n) are able to accumulate in the nucleus (excluding the nucleolus area) and in the mitochondria of cancer cells, reducing mitochondrial potential. The DBP (n) induce the demethylation of a cancer cell's genome, including the demethylation of the promoters of tumor suppressor genes. DBP (n) significantly increase the methylation of ribosomal RNA genes in the nucleoli. Therefore the further study of these compounds is needed; it could lead to the creation of new anticancer agents.


Assuntos
Benzimidazóis/farmacologia , Metilação de DNA/efeitos dos fármacos , RNA Ribossômico/genética , Receptores do Ácido Retinoico/genética , Benzimidazóis/química , Dimerização , Células HeLa , Humanos , Células MCF-7 , PTEN Fosfo-Hidrolase , Espécies Reativas de Oxigênio/metabolismo
8.
Adv Exp Med Biol ; 924: 109-112, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27753029

RESUMO

It has been established that cell-free DNA circulating in the bloodstream affects cells. The characteristics of cfDNA depend on the physiological state of the organism. As we showed previously, diseases can cause either GC-enrichment of the cell-free DNA pool or its oxidation. Thus, in cases of cerebral atherosclerosis, heart attack and rheumatic arthritis the cell-free DNA pool is GC-enriched and, in the case of cancer, both GC-enriched and oxidized. Herein we investigated the time-dependent effect of oxidized and GC-rich cell-free DNA on NF-kB and NRF2 signaling pathways in human mesenchymal stem cells and showed that they affect cells in different ways. Oxidized DNA drastically increases expression of NRF2 in a short period of time, but the effect does not last long. GC-rich DNA causes a prolonged increase in mRNA levels of NF-kB and NRF2 which lasts 48 and 24 h, respectively.


Assuntos
DNA/genética , Sequência Rica em GC , Células-Tronco Mesenquimais/metabolismo , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/genética , Transdução de Sinais/genética , Células Cultivadas , DNA/metabolismo , Expressão Gênica , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Oxirredução , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
9.
Mutat Res ; 791-792: 49-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27648955

RESUMO

A single exposure to ionizing radiation (IR) results in an elevated cell-free DNA (cfDNA) content in the blood plasma. In this case, the cfDNA concentration can be a marker of the cell death in the organism. However, a chronic exposure to a low-dose IR enhances both the endonuclease activity and titer of antibodies to DNA in blood plasma, resulting in a decrease of the total concentration of circulating cfDNA in exposed people. In this case, the total cfDNA concentration should not be considered as a marker of the cell death in an exposed body. We assumed that a pool of the cfDNA circulating in the exposed people contains DNA fragments, which are resistant to a double-strand break formation in the environment of the elevated plasma endonuclease activity, and can be accumulated in the blood plasma. In order to test this hypothesis, we studied the content of GC-rich sequences (69%GC) of the transcribed region of human ribosomal repeat (rDNA), as well as the content of AT-rich repeat (63%AT) of satellite III (1q12) in the cfDNA samples obtained from 285 individuals. We have found that a chronic exposure to gamma-neutron radiation (N=88) and tritium ß-radiation (N=88) evokes an increase of the rDNA content (RrDNA index) and a decrease of the satellite III content (RsatIII index) in the circulating cfDNA as compared with the cfDNA of non-exposed people (N=109). Such index that simultaneously displays both the increase of rDNA content and decrease of satellite III content in the cfDNA (RrDNA/RsatIII) can be recommended as a marker of chronic processes in the body that involve the elevated cell death rate and/or increased blood plasma endonuclease activity.


Assuntos
Partículas beta/efeitos adversos , DNA Ribossômico/sangue , DNA Satélite/sangue , Raios gama/efeitos adversos , Exposição Ocupacional/efeitos adversos , Exposição à Radiação/efeitos adversos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Quebras de DNA de Cadeia Dupla , DNA Ribossômico/genética , DNA Satélite/genética , Relação Dose-Resposta à Radiação , Sequência Rica em GC , Humanos , Pessoa de Meia-Idade , Nêutrons , Exposição Ocupacional/análise , Doses de Radiação , Exposição à Radiação/análise , Reação em Cadeia da Polimerase em Tempo Real , Federação Russa , Sequências de Repetição em Tandem/genética , Trítio , Adulto Jovem
10.
Mutat Res ; 779: 1-15, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26113293

RESUMO

The blood plasma of healthy people contains cell-fee (circulating) DNA (cfDNA). Apoptotic cells are the main source of the cfDNA. The cfDNA concentration increases in case of the organism's cell death rate increase, for example in case of exposure to high-dose ionizing radiation (IR). The objects of the present research are the blood plasma and blood lymphocytes of people, who contacted occupationally with the sources of external gamma/neutron radiation or internal ß-radiation of tritium N = 176). As the controls (references), blood samples of people, who had never been occupationally subjected to the IR sources, were used (N = 109). With respect to the plasma samples of each donor there were defined: the cfDNA concentration (the cfDNA index), DNase1 activity (the DNase1 index) and titre of antibodies to DNA (the Ab DNA index). The general DNA damage in the cells was defined (using the Comet assay, the tail moment (TM) index). A chronic effect of the low-dose ionizing radiation on a human being is accompanied by the enhancement of the DNA damage in lymphocytes along with a considerable cfDNA content reduction, while the DNase1 content and concentration of antibodies to DNA (Ab DNA) increase. All the aforementioned changes were also observed in people, who had not worked with the IR sources for more than a year. The ratio cfDNA/(DNase1×Ab DNA × TM) is proposed to be used as a marker of the chronic exposure of a person to the external low-dose IR. It was formulated the assumption that the joint analysis of the cfDNA, DNase1, Ab DNA and TM values may provide the information about the human organism's cell resistivity to chronic exposure to the low-dose IR and about the development of the adaptive response in the organism that is aimed, firstly, at the effective cfDNA elimination from the blood circulation, and, secondly - at survival of the cells, including the cells with the damaged DNA.


Assuntos
Dano ao DNA/efeitos da radiação , DNA/efeitos da radiação , Linfócitos/efeitos da radiação , Exposição Ocupacional , Adulto , Idoso , Apoptose/efeitos da radiação , Partículas beta , Ensaio Cometa , DNA/sangue , Desoxirribonuclease I/metabolismo , Relação Dose-Resposta à Radiação , Feminino , Raios gama , Humanos , Masculino , Pessoa de Meia-Idade , Nêutrons , Centrais Nucleares , Federação Russa , Trítio
11.
PLoS One ; 8(10): e77469, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24147001

RESUMO

BACKGROUND: Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases and acts upon the cells. Response to cfDNA depends on concentrations and levels of the damage within cfDNA. Oxidized extracellular DNA acts as a stress signal and elicits an adaptive response. PRINCIPAL FINDINGS: Here we show that oxidized extracellular DNA stimulates the survival of MCF-7 tumor cells. Importantly, in cells exposed to oxidized DNA, the suppression of cell death is accompanied by an increase in the markers of genome instability. Short-term exposure to oxidized DNA results in both single- and double strand DNA breaks. Longer treatments evoke a compensatory response that leads to a decrease in the levels of chromatin fragmentations across cell populations. Exposure to oxidized DNA leads to a decrease in the activity of NRF2 and an increase in the activity of NF-kB and STAT3. A model that describes the role of oxidized DNA released from apoptotic cells in tumor biology is proposed. CONCLUSIONS/SIGNIFICANCE: Survival of cells with an unstable genome may substantially augment progression of malignancy. Further studies of the effects of extracellular DNA on malignant and normal cells are warranted.


Assuntos
Dano ao DNA , DNA Circular/metabolismo , Instabilidade Genômica , Neoplasias/genética , Transporte Biológico , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Quebras de DNA , Proteínas de Ligação a DNA , Humanos , Espaço Intracelular/metabolismo , Células MCF-7 , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
12.
Mutat Res ; 747-748: 6-18, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23644378

RESUMO

Cell-free DNA (cfDNA) released from dying cells contains a substantial proportion of oxidized nucleotides, thus, forming cfDNA(OX). The levels of cfDNA(OX) are increased in the serum of patients with chronic diseases. Oxidation of DNA turns it into a stress signal. The samples of genomic DNA (gDNA) oxidized by Н2О2in vitro (gDNA(OX)) induce effects similar to that of DNA released from damaged cells. Here we describe the effects of gDNA(OX) on human fibroblasts cultivated in the stressful conditions of serum withdrawal. In these cells, gDNA(OX) evokes an adaptive response that leads to an increase in the rates of survival in serum starving cell populations as well as in populations irradiated at the dose of 1.2Gy. These effects are not seen in control populations of fibroblasts treated with non-modified gDNA. In particular, the exposure to gDNA(OX) leads to a decrease in the expression of the proliferation marker Ki-67 and an increase in levels of РСNА, a decrease in the proportion of subG1- and G2/M cells, a decrease in proportion of cells with double strand breaks (DSBs). Both gDNA(OX) and gDNA suppress the expression of DNA sensors TLR9 and AIM2 and up-regulate nuclear factor-erythroid 2 p45-related factor 2 (NRF2), while only gDNA(OX) inhibits NF-κB signaling. gDNA(OX) is a model for oxidized cfDNA(OX) that is released from the dying tumor cells and being carried to the distant organs. The systemic effects of oxidized DNA have to be taken into account when treating tumors. In particular, the damaged DNA released from irradiated cells may be responsible for an abscopal effects and a bystander mediated adaptive response seen in some cancer patients. These results indicate the necessity for the further study of the effects of oxidized DNA in both in vitro and in vivo systems.


Assuntos
Dano ao DNA , DNA/farmacologia , Fibroblastos/efeitos dos fármacos , Estresse Oxidativo/fisiologia , 8-Hidroxi-2'-Desoxiguanosina , Adaptação Fisiológica , Animais , Bovinos , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/efeitos da radiação , Cromatina/efeitos dos fármacos , Cromatina/ultraestrutura , Meios de Cultivo Condicionados/farmacologia , Meios de Cultura Livres de Soro , Citocinas/biossíntese , Citocinas/genética , Metilação de DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/análise , Fibroblastos/fisiologia , Fibroblastos/efeitos da radiação , Humanos , Antígeno Ki-67/biossíntese , Antígeno Ki-67/genética , Pulmão/citologia , Pulmão/embriologia , Fator 2 Relacionado a NF-E2/biossíntese , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/metabolismo , Oxirredução , Antígeno Nuclear de Célula em Proliferação/biossíntese , Antígeno Nuclear de Célula em Proliferação/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Espécies Reativas de Oxigênio , Pele/citologia , Receptor Toll-Like 9/biossíntese , Receptor Toll-Like 9/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA