Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Immunol ; 14: 1259423, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38187375

RESUMO

Background: Pneumonia develops frequently after major surgery and polytrauma and thus in the presence of systemic inflammatory response syndrome (SIRS) and organ dysfunction. Immune checkpoints balance self-tolerance and immune activation. Altered checkpoint blood levels were reported for sepsis. We analyzed associations of pneumonia incidence in the presence of SIRS during the first week of critical illness and trends in checkpoint blood levels. Materials and methods: Patients were studied from day two to six after admission to a surgical intensive care unit (ICU). Blood was sampled and physician experts retrospectively adjudicated upon the presence of SIRS and Sepsis-1/2 every eight hours. We measured the daily levels of immune checkpoints and inflammatory markers by bead arrays for polytrauma patients developing pneumonia. Immune checkpoint time series were additionally determined for clinically highly similar polytrauma controls remaining infection-free during follow-up. We performed cluster analyses. Immune checkpoint time trends in cases and controls were compared with hierarchical linear models. For patients with surgical trauma and with and without sepsis, selected immune checkpoints were determined in study baseline samples. Results: In polytrauma patients with post-injury pneumonia, eleven immune checkpoints dominated subcluster 3 that separated subclusters 1 and 2 of myeloid markers from subcluster 4 of endothelial activation, tissue inflammation, and adaptive immunity markers. Immune checkpoint blood levels were more stable in polytrauma cases than controls, where they trended towards an increase in subcluster A and a decrease in subcluster B. Herpes virus entry mediator (HVEM) levels (subcluster A) were lower in cases throughout. In unselected surgical patients, sepsis was not associated with altered HVEM levels at the study baseline. Conclusion: Pneumonia development after polytrauma until ICU-day six was associated with decreased blood levels of HVEM. HVEM signaling may reduce pneumonia risk by strengthening myeloid antimicrobial defense and dampening lymphoid-mediated tissue damage. Future investigations into the role of HVEM in pneumonia and sepsis development and as a predictive biomarker should consider the etiology of critical illness and the site of infection.


Assuntos
Pneumonia , Sepse , Humanos , Estado Terminal , Estudos Retrospectivos , Internalização do Vírus , Síndrome de Resposta Inflamatória Sistêmica
2.
Cells ; 11(18)2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36139351

RESUMO

Natural Killer (NK) cells are innate immune cells that mediate antiviral and antitumor responses. NK cell activation and induction of effector functions are tightly regulated by the integration of activating and inhibitory receptors such as killer immunoglobulin-like receptors (KIR). KIR genes are characterized by a high degree of diversity due to presence or absence, gene copy number and allelic polymorphism. The aim of this study was to establish the distribution of KIR genes and genotypes, to infer the most common haplotypes in an admixed Colombian population and to compare these KIR gene frequencies with some Central and South American populations and worldwide. A total of 161 individuals from Medellin, Colombia were included in the study. Genomic DNA was used for KIR and HLA genotyping. We analyzed only KIR gene-content (presence or absence) based on PCR-SSO. The KIR genotype, most common haplotypes and combinations of KIR and HLA ligands frequencies were estimated according to the presence or absence of KIR and HLA genes. Dendrograms, principal component (PC) analysis and Heatmap analysis based on genetic distance were constructed to compare KIR gene frequencies among Central and South American, worldwide and Amerindian populations. The 16 KIR genes analyzed were distributed in 37 different genotypes and the 7 most frequent KIR inferred haplotypes. Importantly, we found three new genotypes not previously reported in any other ethnic group. Our genetic distance, PC and Heatmap analysis revealed marked differences in the distribution of KIR gene frequencies in the Medellin population compared to worldwide populations. These differences occurred mainly in the activating KIR isoforms, which are more frequent in our population, particularly KIR3DS1. Finally, we observed unique structural patterns of genotypes, which evidences the potential diversity and variability of this gene family in our population, and the need for exhaustive genetic studies to expand our understanding of the KIR gene complex in Colombian populations.


Assuntos
Antivirais , Receptores KIR , Frequência do Gene/genética , Humanos , Imunoglobulinas , Receptores KIR/genética , América do Sul
3.
Sci Rep ; 11(1): 7023, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782423

RESUMO

Natural killer (NK) cells mediate innate host defense against microbial infection and cancer. Hypoxia and low glucose are characteristic for these tissue lesions but do not affect early interferon (IFN) γ and CC chemokine release by interleukin 15 (IL-15) primed human NK cells in vitro. Hypoxia inducible factor 1α (HIF-1α) mediates cellular adaption to hypoxia. Its production is supported by mechanistic target of rapamycin complex 1 (mTORC1) and signal transducer and activator of transcription 3 (STAT3). We used chemical inhibition to probe the importance of mTORC1 and STAT3 for the hypoxia response and of STAT3 for the cytokine response in isolated and IL-15 primed human NK cells. Cellular responses were assayed by magnetic bead array, RT-PCR, western blotting, flow cytometry, and metabolic flux analysis. STAT3 but not mTORC1 activation was essential for HIF-1α accumulation, glycolysis, and oxygen consumption. In both primed normoxic and hypoxic NK cells, STAT3 inhibition reduced the secretion of CCL3, CCL4 and CCL5, and it interfered with IL-12/IL-18 stimulated IFNγ production, but it did not affect cytotoxic granule degranulation up on target cell contact. We conclude that IL-15 priming promotes the HIF-1α dependent hypoxia response and the early cytokine response in NK cells predominantly through STAT3 signaling.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-15/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Fator de Transcrição STAT3/fisiologia , Degranulação Celular , Hipóxia Celular , Citometria de Fluxo , Glicólise , Humanos , Imunofenotipagem , Células K562 , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação
4.
Cells ; 9(3)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192004

RESUMO

Natural killer (NK) cells are among the first innate immune cells to arrive at sites of tissue inflammation and regulate the immune response to infection and tumors by the release of cytokines including interferon (IFN)γ. In vitro exposure to the innate cytokines interleukin 15 (IL-15) and IL-12/IL-18 enhances NK cell IFNγ production which, beyond 16 h of culture, was shown to depend on metabolic switching to glycolysis. NK effector responses are, however, rapid by comparison. Therefore, we sought to evaluate the importance of glycolysis for shorter-term IFNγ production, considering glucose deprivation and hypoxia as adverse tissue inflammation associated conditions. Treatments with IL-15 for 6 and 16 h were equally effective in priming early IFNγ production in human NK cells in response to secondary IL-12/IL-18 stimulation. Short-term priming was not associated with glycolytic switching but induced the release of IFNγ and, additionally, CCL3, CCL4 and CCL5 from both normoxic and hypoxic NK cells in an equally efficient and, unexpectedly, glucose independent manner. We conclude that release of IFNγ and CC chemokines in the early innate immune response is a metabolically autonomous NK effector program.


Assuntos
Quimiocinas CC/farmacologia , Citocinas/metabolismo , Glucose/metabolismo , Interferon gama/metabolismo , Células Matadoras Naturais/metabolismo , Humanos , Hipóxia/metabolismo , Imunidade Inata/fisiologia , Inflamação/metabolismo , Interferon gama/biossíntese , Células Matadoras Naturais/imunologia , Transdução de Sinais/fisiologia
5.
Front Immunol ; 10: 2401, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681292

RESUMO

Natural killer (NK) cells belong to the first line of host defense against infection and cancer. Cytokines, including interleukin-15 (IL-15), critically regulate NK cell activity, resulting in recognition and direct killing of transformed and infected target cells. NK cells have to adapt and respond in inflamed and often hypoxic areas. Cellular stabilization and accumulation of the transcription factor hypoxia-inducible factor-1α (HIF-1α) is a key mechanism of the cellular hypoxia response. At the same time, HIF-1α plays a critical role in both innate and adaptive immunity. While the HIF-1α hydroxylation and degradation pathway has been recently described with the help of mathematical methods, less is known concerning the mechanistic mathematical description of processes regulating the levels of HIF-1α mRNA and protein. In this work we combine mathematical modeling with experimental laboratory analysis and examine the dynamic relationship between HIF-1α mRNA, HIF-1α protein, and IL-15-mediated upstream signaling events in NK cells from human blood. We propose a system of non-linear ordinary differential equations with positive and negative feedback loops for describing the complex interplay of HIF-1α regulators. The experimental design is optimized with the help of mathematical methods, and numerical optimization techniques yield reliable parameter estimates. The mathematical model allows for the investigation and prediction of HIF-1α stabilization under different inflammatory conditions and provides a better understanding of mechanisms mediating cellular enrichment of HIF-1α. Thanks to the combination of in vitro experimental data and in silico predictions we identified the mammalian target of rapamycin (mTOR), the nuclear factor-κB (NF-κB), and the signal transducer and activator of transcription 3 (STAT3) as central regulators of HIF-1α accumulation. We hypothesize that the regulatory pathway proposed here for NK cells can be extended to other types of immune cells. Understanding the molecular mechanisms involved in the dynamic regulation of the HIF-1α pathway in immune cells is of central importance to the immune cell function and could be a promising strategy in the design of treatments for human inflammatory diseases and cancer.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Modelos Imunológicos , Transdução de Sinais/imunologia , Humanos , Células Matadoras Naturais/citologia
6.
J Biol Chem ; 291(25): 12960-77, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27129235

RESUMO

Natural killer (NK) cells induce apoptosis in infected and transformed cells and are important producers of immunoregulatory cytokines. Therefore, they operate under low oxygen conditions (hypoxia) in inflammatory and tumor environments. In vitro studies of NK cells are, however, commonly performed in ambient air (normoxia). We used global gene expression profiling to evaluate changes in transcriptional pathways in primary human NK cells following short term culture under hypoxia compared with normoxia and in response to interleukin 15 (IL-15) priming using a 2 × 2 factorial design. The largest contrasts observed were priming dependences for associations between hypoxia and the hypoxia-inducible factor (Hif) 1 signaling and glycolysis pathways. RT-PCR confirmed positive synergistic hypoxia/IL-15 interactions for genes of key regulatory and metabolic enzymes. IL-15 primes NK cells for effector functions, which were recently demonstrated to depend on glycolytic switching. We did not, however, observe important increases in glycolytic flux through hypoxia and priming alone. Chemical Hif-1α inhibition suggested equal importance of this transcription factor for glycolysis and energy production under normoxia and hypoxia. Hypoxia promoted secretion of CC chemokines Ccl3/4/5 and macrophage migration inhibitory factor. Unexpectedly, hypoxia also stimulated migration of NK cells through the extracellular matrix and shifted amounts of susceptible leukemia target cells toward late apoptosis in a cell killing assay. We conclude that short term hypoxia supports these activities by positively interacting with NK cell priming at the level of glycolytic gene transcription. Hypoxic conditioning of NK cells may thus benefit their use in cell-based immunotherapy of cancer.


Assuntos
Glicólise/genética , Interleucina-15/fisiologia , Células Matadoras Naturais/metabolismo , Transcrição Gênica , Trifosfato de Adenosina/metabolismo , Transferência Adotiva , Apoptose , Hipóxia Celular , Movimento Celular , Sobrevivência Celular , Quimiocinas/metabolismo , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Células K562 , L-Lactato Desidrogenase/metabolismo , Transdução de Sinais , Ativação Transcricional
7.
Hum Immunol ; 77(5): 403-10, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26970513

RESUMO

High serum sCD30 levels are associated with inflammatory disorders and poor outcome in renal transplantation. The contribution to these phenomena of transcripts and proteins related to CD30-activation and -cleavage is unknown. We assessed in peripheral blood of end-stage renal disease patients (ESRDP) transcripts of CD30-activation proteins CD30 and CD30L, CD30-cleavage proteins ADAM10 and ADAM17, and Th1- and Th2-type immunity-related factors t-bet and GATA3. Additionally, we evaluated the same transcripts and release of sCD30 and 32 cytokines after allogeneic and polyclonal T-cell activation. In peripheral blood, ESRDP showed increased levels of t-bet and GATA3 transcripts compared to healthy controls (HC) (both P<0.01) whereas levels of CD30, CD30L, ADAM10 and ADAM17 transcripts were similar. Polyclonal and allogeneic stimulation induced higher levels of CD30 transcripts in ESRDP than in HC (both P<0.001). Principal component analysis (PCA) in allogeneic cultures of ESRDP identified two correlation clusters, one consisting of sCD30, the Th-1 cytokine IFN-γ, MIP-1α, RANTES, sIL-2Rα, MIP-1ß, TNF-ß, MDC, GM-CSF and IL-5, and another one consisting of CD30 and t-bet transcripts, IL-13 and proinflammatory proteins IP-10, IL-8, IL-1Rα and MCP-1. Reflecting an activated immune state, ESRDP exhibited after allostimulation upregulation of CD30 transcripts in T cells, which was associated with Th1 and proinflammatory responses.


Assuntos
Ligante CD30/sangue , Fator de Transcrição GATA3/metabolismo , Antígeno Ki-1/sangue , Falência Renal Crônica/imunologia , Proteínas com Domínio T/metabolismo , Células Th1/imunologia , Células Th2/imunologia , Proteína ADAM10/sangue , Proteína ADAM17/sangue , Adulto , Secretases da Proteína Precursora do Amiloide/sangue , Ligante CD30/genética , Células Cultivadas , Citocinas/metabolismo , Feminino , Fator de Transcrição GATA3/genética , Humanos , Mediadores da Inflamação/metabolismo , Isoantígenos/imunologia , Antígeno Ki-1/genética , Masculino , Proteínas de Membrana/sangue , Pessoa de Meia-Idade , Proteínas com Domínio T/genética
8.
Transplantation ; 96(2): 154-61, 2013 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-23857000

RESUMO

BACKGROUND: Membrane CD30 is an important costimulatory molecule for activated T lymphocytes, and serum level of soluble CD30 (sCD30) is considered a marker for predicting outcome in kidney transplantation. METHODS: We investigated the kinetics of CD30 expression on CD4 and CD8 T-cell populations and the source of sCD30 during alloimmune responses in vitro. The effect of neutralizing antibodies against interferon (IFN)-γ and other cytokines on sCD30 release and the involvement of metalloproteinases ADAM10 and ADAM17/TACE that are responsible for sCD30 shedding were also assessed. Memory phenotypes and CD30 expression on allostimulated CD3 lymphocytes were evaluated in dialysis patients and matched controls. RESULTS: Allogeneic stimulation resulted in conversion of naive responder cells to central memory CD4 cells (P<0.001 at 96 hr) and effector CD8 cells (P<0.01 at 120 hr), which was accompanied by increased CD30 expression. Release of sCD30 was attributed mainly to central memory cells, and neutralization of IFN-γ (P<0.001) and interleukin (IL)-2 (P<0.001) impaired the release of sCD30 during allostimulation but did not alter the levels of ADAM10 and ADAM17/TACE. CD30 expression was modulated in dialysis patients in a similar way as in healthy controls. CONCLUSIONS: Allostimulation results in the up-regulation of the T-cell activation marker CD30 on CD4 as well as CD8 memory T cells and increased release of sCD30 from these cells in an IFN-γ- and IL-2-dependent manner. These results may explain clinical findings on the suitability of sCD30 and IFN-γ- and IL-2-producing T cells for immune monitoring of kidney transplant recipients before and after transplantation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Interferon gama/imunologia , Interleucina-2/imunologia , Antígeno Ki-1/imunologia , Proteínas ADAM/imunologia , Proteína ADAM10 , Proteína ADAM17 , Adulto , Secretases da Proteína Precursora do Amiloide/imunologia , Feminino , Citometria de Fluxo , Humanos , Imunofenotipagem , Isoantígenos/imunologia , Antígeno Ki-1/sangue , Transplante de Rim/imunologia , Ativação Linfocitária/imunologia , Masculino , Proteínas de Membrana/imunologia , Pessoa de Meia-Idade , Solubilidade , Regulação para Cima/imunologia
9.
Hum Immunol ; 73(11): 1102-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22940451

RESUMO

High serum levels of soluble CD30 (sCD30) are associated with poor renal allograft survival, and regulatory T cells (Tregs) influence allograft survival depending on CD30 signaling. However, how sCD30 modulates alloimmune responses remains poorly understood. We measured the level of Tregs and sCD30 in patients with end-stage renal failure (ESRF) and analyzed whether allo- or polyclonal stimulation of the patients' T cells results in the expression and release of CD30. ESRF patients showed increased serum sCD30 levels and lower percentages of circulating Tregs as compared to healthy controls (HC) (p<0.001 and 0.024). Polyclonal and allogeneic stimulation resulted in higher expression of CD30, and after polyclonal stimulation, ESRF patients showed higher percentages of CD30-expressing T cells than HC (p<0.001). Compared to autologous stimulation, allogeneic stimulation induced significantly higher expression of CD30 on T cells of ESRF patients only. After polyclonal as well as allogeneic stimulation, an increased sCD30 content was found in culture supernatants of both ESRF patients and HC (p<0.001). Together with decreased Tregs, high serum sCD30 and increased induction of CD30 on T cells after polyclonal stimulation may explain exacerbated alloimmune responses and poor allograft survival in ESRF patients in whom immunosuppression is not able to control the alloimmune response.


Assuntos
Isoantígenos/imunologia , Antígeno Ki-1/sangue , Falência Renal Crônica/sangue , Falência Renal Crônica/imunologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
10.
Medicina (B.Aires) ; 67(5): 491-501, sep.-oct. 2007. ilus
Artigo em Espanhol | LILACS | ID: lil-489374

RESUMO

La respuesta inmune desencadenada frente a un trasplante alogénico conduce usualmente a una respuesta efectora que resulta en el rechazo del aloinjerto; sin embargo, algunos individuos mantienen un trasplante funcionante a largo plazo sin signos de rechazo (tolerancia operacional), aun en ausencia de inmunosupresión. Se ha sugerido que los mismos mecanismos son responsables para la tolerancia hacia antígenos propios y aloantígenos. Uno de estos mecanismos es la regulación inmune y se han identificado varias subpoblaciones de células con propiedades reguladoras. Entre ellas, la población celular mejor caracterizada corresponde a las células T reguladoras (Tregs). Aunque las Tregs en ratones son CD4+CD25+, en humanos el fenotipo de las Treg está restringida a las células T CD4 con alta expresión de CD25 (CD25high) y del factor de transcripción Foxp3. El análisis fenotípico y funcional de las células T reguladoras o supresoras circulantes en pacientes trasplantados tal vez sea útil para la detección de pacientes tolerantes operacionales. Además, una futura manipulación in vitro de estas células con fines terapéuticos podría conducir a lograr la inducción de tolerancia in vivo en el trasplante clínico. Aquí, revisamos la evidencia experimental y clínica del papel de las células reguladoras en la biología del trasplante.


The immune response elicited by an allogenic transplant usually leads to an effector response resulting in allograft rejection; however, some individuals maintain a long-term functioning transplant without signs of rejection (operational tolerance) even in the absence of immunosuppression. It has been suggested that the same mechanisms are responsible for tolerance to self-antigens and alloantigens. One of such mechanisms is immune regulation and several cell subsets with regulatory properties have been identified. Among them, the best characterized cell populations are the regulatory T cells (Treg). Although Treg in mice are CD4+CD25+, in humans the Treg phenotype is restricted to CD4 T cells with high expression of CD25 (CD25high) and Foxp3. Phenotypic and functional analysis of circulating regulatory or suppressor T cells in transplant patients may be useful for detection of operationally tolerant patients. Moreover, future in vitro manipulation of these cells with therapeutic purposes could lead to accomplish induction of in vivo tolerance in clinical transplantation. Herein, we review the experimental and clinical evidence for the role of regulatory cells in transplant biology.


Assuntos
Humanos , Animais , Fatores de Transcrição Forkhead/imunologia , Sobrevivência de Enxerto , Rejeição de Enxerto/imunologia , Tolerância Imunológica , Transplante de Rim/imunologia , Linfócitos T Reguladores/imunologia , /imunologia , /imunologia , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA