Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 289(42): 29261-72, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25190810

RESUMO

Tolerance is a well described component of alcohol abuse and addiction. The large conductance voltage- and Ca(2+)-gated potassium channel (BK) has been very useful for studying molecular tolerance. The influence of association with the ß4 subunit can be observed at the level of individual channels, action potentials in brain slices, and finally, drinking behavior in the mouse. Previously, we showed that 50 mm alcohol increases both α and αß4 BK channel open probability, but only α BK develops acute tolerance to this effect. Currently, we explore the possibility that the influence of the ß4 subunit on tolerance may result from a striking effect of ß4 on kinase modulation of the BK channel. We examine the influence of the ß4 subunit on PKA, CaMKII, and phosphatase modulation of channel activity, and on molecular tolerance to alcohol. We record from human BK channels heterologously expressed in HEK 293 cells composed of its core subunit, α alone (Insertless), or co-expressed with the ß4 BK auxiliary subunit, as well as, acutely dissociated nucleus accumbens neurons using the cell-attached patch clamp configuration. Our results indicate that BK channels are strongly modulated by activation of specific kinases (PKA and CaMKII) and phosphatases. The presence of the ß4 subunit greatly influences this modulation, allowing a variety of outcomes for BK channel activity in response to acute alcohol.


Assuntos
Etanol/química , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Charibdotoxina/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Eletrofisiologia , Células HEK293 , Humanos , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Potássio/metabolismo , Fatores de Tempo
2.
J Neurosci ; 34(10): 3733-42, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24599471

RESUMO

µ-Opioid agonists have no effect on calcium currents (I(Ca)) in neurohypophysial terminals when recorded using the classic whole-cell patch-clamp configuration. However, µ-opioid receptor (MOR)-mediated inhibition of I(Ca) is reliably demonstrated using the perforated-patch configuration. This suggests that the MOR-signaling pathway is sensitive to intraterminal dialysis and is therefore mediated by a readily diffusible second messenger. Using the perforated patch-clamp technique and ratio-calcium-imaging methods, we describe a diffusible second messenger pathway stimulated by the MOR that inhibits voltage-gated calcium channels in isolated terminals from the rat neurohypophysis (NH). Our results show a rise in basal intracellular calcium ([Ca(2+)]i) in response to application of [D-Ala(2)-N-Me-Phe(4),Gly5-ol]-Enkephalin (DAMGO), a MOR agonist, that is blocked by D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), a MOR antagonist. Buffering DAMGO-induced changes in [Ca(2+)]i with BAPTA-AM completely blocked the inhibition of both I(Ca) and high-K(+)-induced rises in [Ca(2+)]i due to MOR activation, but had no effect on κ-opioid receptor (KOR)-mediated inhibition. Given the presence of ryanodine-sensitive stores in isolated terminals, we tested 8-bromo-cyclic adenosine diphosphate ribose (8Br-cADPr), a competitive inhibitor of cyclic ADP-ribose (cADPr) signaling that partially relieves DAMGO inhibition of I(Ca) and completely relieves MOR-mediated inhibition of high-K(+)-induced and DAMGO-induced rises in [Ca(2+)]i. Furthermore, antagonist concentrations of ryanodine completely blocked MOR-induced increases in [Ca(2+)]i and inhibition of I(Ca) and high-K(+)-induced rises in [Ca(2+)]i while not affecting KOR-mediated inhibition. Antagonist concentrations of ryanodine also blocked MOR-mediated inhibition of electrically-evoked increases in capacitance. These results strongly suggest that a key diffusible second messenger mediating the MOR-signaling pathway in NH terminals is [Ca(2+)]i released by cADPr from ryanodine-sensitive stores.


Assuntos
Cálcio/metabolismo , Neuro-Hipófise/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores Opioides mu/antagonistas & inibidores , Rianodina/farmacologia , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia , Animais , Ala(2)-MePhe(4)-Gly(5)-Encefalina/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Masculino , Neuro-Hipófise/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/fisiologia , Rianodina/metabolismo
3.
Cell Calcium ; 51(3-4): 284-92, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22341671

RESUMO

The hypothalamic-neurohypophysial system (HNS) controls diuresis and parturition through the release of arginine-vasopressin (AVP) and oxytocin (OT). These neuropeptides are chiefly synthesized in hypothalamic magnocellular somata in the supraoptic and paraventricular nuclei and are released into the blood stream from terminals in the neurohypophysis. These HNS neurons develop specific electrical activity (bursts) in response to various physiological stimuli. The release of AVP and OT at the level of neurohypophysis is directly linked not only to their different burst patterns, but is also regulated by the activity of a number of voltage-dependent channels present in the HNS nerve terminals and by feedback modulators. We found that there is a different complement of voltage-gated Ca(2+) channels (VGCC) in the two types of HNS terminals: L, N, and Q in vasopressinergic terminals vs. L, N, and R in oxytocinergic terminals. These channels, however, do not have sufficiently distinct properties to explain the differences in release efficacy of the specific burst patterns. However, feedback by both opioids and ATP specifically modulate different types of VGCC and hence the amount of AVP and/or OT being released. Opioid receptors have been identified in both AVP and OT terminals. In OT terminals, µ-receptor agonists inhibit all VGCC (particularly R-type), whereas, they induce a limited block of L-, and P/Q-type channels, coupled to an unusual potentiation of the N-type Ca(2+) current in the AVP terminals. In contrast, the N-type Ca(2+) current can be inhibited by adenosine via A(1) receptors leading to the decreased release of both AVP and OT. Furthermore, ATP evokes an inactivating Ca(2+)/Na(+)-current in HNS terminals able to potentiate AVP release through the activation of P2X2, P2X3, P2X4 and P2X7 receptors. In OT terminals, however, only the latter receptor type is probably present. We conclude by proposing a model that can explain how purinergic and/or opioid feedback modulation during bursts can mediate differences in the control of neurohypophysial AVP vs. OT release.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo N/metabolismo , Terminações Nervosas/metabolismo , Neurossecreção , Ocitocina/metabolismo , Neuro-Hipófise/fisiologia , Vasopressinas/metabolismo , Potenciais de Ação , Animais , Sinalização do Cálcio , Retroalimentação Fisiológica , Humanos , Sistema Hipotálamo-Hipofisário/fisiologia , Terminações Nervosas/patologia , Neuro-Hipófise/patologia , Receptor Cross-Talk , Receptores Opioides mu/metabolismo
4.
J Neurosci ; 31(7): 2436-46, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21325511

RESUMO

The neuronal calcium- and voltage-activated BK potassium channel is modulated by ethanol, and plays a role in behavioral tolerance in vertebrates and invertebrates. We examine the influence of temporal parameters of alcohol exposure on the characteristics of BK molecular tolerance in the ventral striatum, an important component of brain reward circuitry. BK channels in striatal neurons of C57BL/6J mice exhibited molecular tolerance whose duration was a function of exposure time. After 6 h exposure to 20 mm (0.09 mg%) ethanol, alcohol sensitivity was suppressed beyond 24 h after withdrawal, while after a 1 or 3 h exposure, sensitivity had significantly recovered after 4 h. This temporally controlled transition to persistent molecular tolerance parallels changes in BK channel isoform profile. After withdrawal from 6 h, but not 3 h alcohol exposure, mRNA levels of the alcohol-insensitive STREX (stress axis-regulated exon) splice variant were increased. Moreover, the biophysical properties of BK channels during withdrawal from 6 h exposure were altered, and match the properties of STREX channels exogenously expressed in HEK 293 cells. Our results suggest a temporally triggered shift in BK isoform identity. Once activated, the transition does not require the continued presence of alcohol. We next determined whether the results obtained using cultured striatal neurons could be observed in acutely dissociated striatal neurons, after alcohol administration in the living mouse. The results were in remarkable agreement with the striatal culture data, showing persistent molecular tolerance after injections producing 6 h of intoxication, but not after injections producing only 3 h of intoxication.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Dinâmica não Linear , Regulação para Cima/efeitos dos fármacos , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Sobrevivência Celular , Células Cultivadas , Corpo Estriado/citologia , DNA Recombinante/efeitos dos fármacos , DNA Recombinante/genética , Éxons/efeitos dos fármacos , Éxons/genética , Humanos , Ativação do Canal Iônico/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Splicing de RNA , Ratos , Ratos Sprague-Dawley , Síndrome de Abstinência a Substâncias/genética , Síndrome de Abstinência a Substâncias/fisiopatologia , Fatores de Tempo
5.
Pflugers Arch ; 450(6): 381-9, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15988588

RESUMO

Effects of extracellular adenosine tri-phosphate (ATP) on ionic currents were investigated using the perforated-patch whole-cell recording technique on isolated terminals of the Hypothalamic Neurohypophysial System (HNS). ATP induced a current response in 70% of these isolated terminals. This inwardly-rectifying, inactivating current had an apparent reversal near 0 mV and was dose-dependent on ATP with an EC50=9.6+/-1.0 microM. In addition, current amplitudes measured at maximal ATP concentrations and optimum holding potentials had a current density of 70.8 pA pF(-1) and were greatly inhibited by suramin and PPADS. Different purinergic receptor agonists were tested, with the following efficacy: ATP > or = 2-methylthioATP > ATP-gamma-S > Bz-Bz-ATP > alpha,beta-methylene-ATP > beta,gamma-methylene-ATP. However, UTP and ADP were ineffective. These data suggest the involvement of a P2X purinergic receptor in the ATP-induced responses. Immunocytochemical labeling in vasopressinergic terminals indicates the existence of P2X(2,3,4, and 7), but not P2X6 receptors. Additionally, P2X(2 and 3) were not found in terminals which labeled for oxytocin. In summary, the EC50, decay, inactivation, and pharmacology indicate that a functional mixture of P2X(2 and 3) homomeric receptors mediate the majority of the ATP responses in vasopressinergic HNS terminals. We speculate that the characteristics of these types of receptors reflect the function of co-released ATP in the terminal compartment of these and other CNS neurons.


Assuntos
Trifosfato de Adenosina/farmacologia , Receptores Purinérgicos P2/fisiologia , Animais , Imuno-Histoquímica , Masculino , Neuro-Hipófise/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2/efeitos dos fármacos , Receptores Purinérgicos P2X2 , Receptores Purinérgicos P2X3 , Vasopressinas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA