RESUMO
Mutual interactions between the diaphragm and lung transplantation (LTx) are known to exist. Before LTx, many factors can exert notable impact on the diaphragmatic function, such as the underlying respiratory disease, the comorbidities, and the chronic treatments of the patient. In the post-LTx setting, even the surgical procedure itself can cause a stressful trauma to the diaphragm, potentially leading to morphological and functional alterations. Conversely, the diaphragm can significantly influence various aspects of the LTx process, ranging from graft-to-chest cavity size matching to the long-term postoperative respiratory performance of the recipient. Despite this, there are still no standard criteria for evaluating, defining, and managing diaphragmatic dysfunction in the context of LTx to date. This deficiency hampers the accurate assessment of those factors which affect the diaphragm and its reciprocal influence on LTx outcomes. The objective of this narrative review is to delve into the complex role the diaphragm plays in the different stages of LTx and into the modifications of this muscle following surgery.
Assuntos
Diafragma , Transplante de Pulmão , Humanos , Complicações Pós-Operatórias/etiologiaRESUMO
Background: Congenital myopathies are a group of heterogeneous inherited disorders, mainly characterized by early-onset hypotonia and muscle weakness. The spectrum of clinical phenotype can be highly variable, going from very mild to severe presentations. The course also varies broadly resulting in a fatal outcome in the most severe cases but can either be benign or lead to an amelioration even in severe presentations. Muscle biopsy analysis is crucial for the identification of pathognomonic morphological features, such as core areas, nemaline bodies or rods, nuclear centralizations and congenital type 1 fibers disproportion. However, multiple abnormalities in the same muscle can be observed, making more complex the myopathological scenario. Case presentation: Here, we describe an Italian newborn presenting with severe hypotonia, respiratory insufficiency, inability to suck and swallow, requiring mechanical ventilation and gastrostomy feeding. Muscle biopsy analyzed by light microscopy showed the presence of vacuoles filled with glycogen, suggesting a metabolic myopathy, but also fuchsinophilic inclusions. Ultrastructural studies confirmed the presence of normally structured glycogen, and the presence of minirods, directing the diagnostic hypothesis toward a nemaline myopathy. An expanded Next Generation Sequencing analysis targeting congenital myopathies genes revealed the presence of a novel heterozygous c.965 T > A p. (Leu322Gln) variant in the ACTA1 gene, which encodes the skeletal muscle alpha-actin. Conclusion: Our case expands the repertoire of molecular and pathological features observed in actinopathies. We highlight the value of ultrastructural examination to investigate the abnormalities detected at the histological level. We also emphasized the use of expanded gene panels in the molecular analysis of neuromuscular patients, especially for those ones presenting multiple bioptic alterations.
RESUMO
Lafora disease is a rare genetic disorder characterized by a disruption in glycogen metabolism. It manifests as progressive myoclonus epilepsy and cognitive decline during adolescence. Pathognomonic is the presence of abnormal glycogen aggregates that, over time, produce large inclusions (Lafora bodies) in various tissues. This study aims to describe the clinical and histopathological aspects of a novel Lafora disease patient, and to provide an update on the therapeutical advancements for this disorder. A 20-year-old Libyan boy presented with generalized tonic-clonic seizures, sporadic muscular jerks, eyelid spasms, and mental impairment. Electroencephalography showed multiple discharges across both brain hemispheres. Brain magnetic resonance imaging was unremarkable. Muscle biopsy showed increased lipid content and a very mild increase of intermyofibrillar glycogen, without the polyglucosan accumulation typically observed in Lafora bodies. Despite undergoing three lines of antiepileptic treatment, the patient's condition showed minimal to no improvement. We identified the homozygous variant c.137G>A, p.(Cys46Tyr), in the EPM2B/NHLRC1 gene, confirming the diagnosis of Lafora disease. To our knowledge, the presence of lipid aggregates without Lafora bodies is atypical. Lafora disease should be considered during the differential diagnosis of progressive, myoclonic, and refractory epilepsies in both children and young adults, especially when accompanied by cognitive decline. Although there are no effective therapies yet, the development of promising new strategies prompts the need for an early and accurate diagnosis.
RESUMO
POEMS syndrome-characterized by polyneuropathy, organomegaly, endocrinopathy, M-protein, and skin changes-is an uncommon and complex paraneoplastic disorder encompassing a diverse array of symptoms. Here we report the challenging case of a 34-year-old female who sought medical attention at the emergency department due to distal lower limb weakness. She was breastfeeding her first child at that time. Her condition rapidly deteriorated, making it difficult for her to perform simple tasks independently. Initially, she struggled with activities like jumping or climbing stairs. Eventually, her ability to walk was also compromised. These symptoms underscored the swift evolution of her polyneuropathy. Nerve conduction studies and electromyography confirmed a diagnosis of mixed demyelinating and axonal polyneuropathy. Subsequent investigations, including bone marrow biopsy and immunochemistry testing, revealed a plasma cell disorder characterized by lambda monoclonal gammopathy, along with elevated levels of vascular endothelial growth factor (VEGF > 8000 pg/mL). This pivotal finding led to the diagnosis of POEMS syndrome, prompting the initiation of antineoplastic therapy (daratumumab-lenalidomide-dexamethasone) to manage this condition. An autologous cell transplantation was planned. The rarity of POEMS syndrome and its diverse clinical manifestations often lead to an incorrect or delayed diagnosis. Our case underscores the importance of considering this syndrome in patients presenting with acute or subacute polyneuropathy, even if the patients are young. In conclusion, this case elucidates the diagnostic complexities of POEMS syndrome, emphasizing the integral role of comprehensive multidisciplinary evaluations and the potential influence of increased VEGF as a diagnostic key element and possible therapeutic target.
RESUMO
Phospholamban is involved in the regulation of the activity and storage of calcium in cardiac muscle. Several mutations have been identified in the PLN gene causing cardiac disease associated with arrhythmogenic and dilated cardiomyopathy. The patho-mechanism underlying PLN mutations is not fully understood and a specific therapy is not yet available. PLN mutated patients have been deeply investigated in cardiac muscle, but very little is known about the effect of PLN mutations in skeletal muscle. In this study, we investigated both histological and functional features in skeletal muscle tissue and muscle-derived myoblasts from an Italian patient carrying the Arg14del mutation in PLN. The patient has a cardiac phenotype, but he also reported lower limb fatigability, cramps and fasciculations. The evaluation of a skeletal muscle biopsy showed histological, immunohistochemical and ultrastructural alterations. In particular, we detected an increase in the number of centronucleated fibers and a reduction in the fiber cross sectional area, an alteration in p62, LC3 and VCP proteins and the formation of perinuclear aggresomes. Furthermore, the patient's myoblasts showed a greater propensity to form aggresomes, even more marked after proteasome inhibition compared with control cells. Further genetic and functional studies are necessary to understand whether a definition of PLN myopathy, or cardiomyopathy plus, can be introduced for selected cases with clinical evidence of skeletal muscle involvement. Including skeletal muscle examination in the diagnostic process of PLN-mutated patients can help clarify this issue.
Assuntos
Proteínas de Ligação ao Cálcio , Músculo Esquelético , Masculino , Biópsia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Músculo Esquelético/metabolismo , Mutação/genética , Mioblastos/metabolismo , HumanosRESUMO
BACKGROUND: Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a systemic disorder in which multi-organ dysfunction may occur from mitochondrial metabolism failure. Maternally inherited mutations in the MT-TL1 gene are the most frequent causes for this disorder. Clinical manifestations may include stroke-like episodes, epilepsy, dementia, headache and myopathy. Among these, acute visual failure, usually in association with cortical blindness, can occur because of stroke-like episodes affecting the occipital cortex or the visual pathways. Vision loss due to optic neuropathy is otherwise considered a typical manifestation of other mitochondrial diseases such as Leber hereditary optic neuropathy (LHON). CASE PRESENTATION: Here we describe a 55-year-old woman, sister of a previously described patient with MELAS harbouring the m.3243A > G (p.0, MT-TL1) mutation, with otherwise unremarkable medical history, that presented with subacute, painful visual impairment of one eye, accompanied by proximal muscular pain and headache. Over the next weeks, she developed severe and progressive vision loss limited to one eye. Ocular examination confirmed unilateral swelling of the optic nerve head; fluorescein angiography showed segmental perfusion delay in the optic disc and papillary leakage. Neuroimaging, blood and CSF examination and temporal artery biopsy ruled out neuroinflammatory disorders and giant cell arteritis (GCA). Mitochondrial sequencing analysis confirmed the m.3243A > G transition, and excluded the three most common LHON mutations, as well as the m.3376G > A LHON/MELAS overlap syndrome mutation. Based on the constellation of clinical symptoms and signs presented in our patient, including the muscular involvement, and the results of the investigations, the diagnosis of optic neuropathy as a stroke-like event affecting the optic disc was performed. L-arginine and ubidecarenone therapies were started with the aim to improve stroke-like episode symptoms and prevention. The visual defect remained stable with no further progression or outbreak of new symptoms. CONCLUSIONS: Atypical clinical presentations must be always considered in mitochondrial disorders, even in well-described phenotypes and when mutational load in peripheral tissue is low. Mitotic segregation of mitochondrial DNA (mtDNA) does not allow to know the exact degree of heteroplasmy existent within different tissue, such as retina and optic nerve. Important therapeutic implications arise from a correct diagnosis of atypical presentation of mitochondrial disorders.
Assuntos
Acidose Láctica , Síndrome MELAS , Atrofia Óptica Hereditária de Leber , Doenças do Nervo Óptico , Neuropatia Óptica Isquêmica , Acidente Vascular Cerebral , Feminino , Humanos , Síndrome MELAS/genética , Neuropatia Óptica Isquêmica/complicações , Mutação , Acidente Vascular Cerebral/complicações , Doenças do Nervo Óptico/complicações , Atrofia Óptica Hereditária de Leber/genética , DNA Mitocondrial/genética , Transtornos da Visão/complicações , Cefaleia/complicaçõesRESUMO
Sarcoglycanopathies are highly heterogeneous in terms of disease progression, muscular weakness, loss of ambulation and cardiac/respiratory involvement. Their clinical severity usually correlates with the residual protein amount, which makes protein quantification extremely relevant. Sarcoglycanopathy diagnosis is genetic, but skeletal muscle analysis - by both immunohistochemistry and Western blot (WB) - is still mandatory to establish the correct diagnostic process. Unfortunately, however, WB analysis cannot be performed if the bioptic specimen is scarce. This study provides a sensitive tool for semi-quantification of residual amount of sarcoglycans in patients affected by sarcoglycanopathies, based on immunofluorescence staining on skeletal muscle sections, image acquisition and software elaboration. We applied this method to eleven sarcoglycanopathies, seven Becker muscular dystrophies and four age-matched controls. Fluorescence data analysed in patients and compared to age-matched controls showed a significant reduction of the mutated sarcoglycan expression and a variable reduction of the other sarcoglycans. Fluorescence normalized data analysed in relation to the age of onset of the disease, showed a negative correlation of α-sarcoglycan fluorescent signal versus fibrosis in patients with an early age of onset and a negative correlation between δ-sarcoglycan signal and fibrosis in both intermediate and late age of onset groups. The availability of a method that allows objective quantification of the sarcolemmal proteins, faster and less consuming than WB analysis and able to detect low residual sarcoglycan expression with great sensitivity, proves useful to better define both patient prognosis and expected disease evolution. The proposed method could be employed also to monitor the efficacy of therapeutic interventions and during clinical trials.
Assuntos
Sarcoglicanopatias , Sarcoglicanas , Biópsia , Fibrose , Imunofluorescência , Humanos , Músculo Esquelético/metabolismo , Sarcoglicanopatias/diagnóstico , Sarcoglicanopatias/metabolismo , Sarcoglicanopatias/patologia , Sarcoglicanas/metabolismoRESUMO
BACKGROUND: Choline kinase beta (CHKB) catalyzes the first step in the de novo biosynthesis of phosphatidyl choline and phosphatidylethanolamine via the Kennedy pathway. Derangement of this pathway might also influence the homeostasis of mitochondrial membranes. Autosomal recessive CHKB mutations cause a rare form of congenital muscular dystrophy known as megaconial congenital muscular dystrophy (MCMD). CASE PRESENTATION: We describe a novel proband presenting MCMD due to unpublished CHKB mutations. The patient is a 6-year-old boy who came to our attention for cognitive impairment and slowly progressive muscular weakness. He was the first son of non-consanguineous healthy parents from Sri Lanka. Neurological examination showed proximal weakness at four limbs, weak osteotendinous reflexes, Gowers' maneuver, and waddling gate. Creatine kinase levels were mildly increased. EMG and brain MRI were normal. Left quadriceps skeletal muscle biopsy showed a myopathic pattern with nuclear centralizations and connective tissue increase. Histological and histochemical staining suggested subsarcolemmal localization and dimensional increase of mitochondria. Ultrastructural analysis confirmed the presence of enlarged ("megaconial") mitochondria. Direct sequencing of CHKB identified two novel defects: the c.1060G > C (p.Gly354Arg) substitution and the c.448-56_29del intronic deletion, segregating from father and mother, respectively. Subcloning of RT-PCR amplicons from patient's muscle RNA showed that c.448-56_29del results in the partial retention (14 nucleotides) of intron 3, altering physiological splicing and transcript stability. Biochemical studies showed reduced levels of the mitochondrial fission factor DRP1 and the severe impairment of mitochondrial respiratory chain activity in patient's muscle compared to controls. CONCLUSIONS: This report expands the molecular findings associated with MCMD and confirms the importance of considering CHKB variants in the differential diagnosis of patients presenting with muscular dystrophy and mental retardation. The clinical outcome of MCMD patients seems to be influenced by CHKB molecular defects. Histological and ultrastructural examination of muscle biopsy directed molecular studies and allowed the identification and characterization of an intronic mutation, usually escaping standard molecular testing.
Assuntos
Colina Quinase , Distrofias Musculares , Criança , Colina Quinase/genética , Colina Quinase/metabolismo , Creatina Quinase , Humanos , Masculino , Músculo Esquelético/metabolismo , Distrofias Musculares/congênito , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Mutação , Nucleotídeos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , RNA/metabolismoRESUMO
Objectives: The c.254C>G (p.S85C) MATR3 variant causes vocal cord and pharyngeal weakness with distal myopathy (VCPDM), which is characterized by progressive, asymmetric, predominantly distal muscle weakness, dysphonia, dysphagia, and respiratory impairment. Herein, we describe an Italian patient who harbored the p.S85C MATR3 variant and showed a composite phenotype of VCPDM and sensorimotor polyneuropathy. Methods: The proband underwent neurologic evaluation, muscular MRI of the lower limbs, neurophysiologic assessment, muscle biopsy, and spirometry. After excluding common acquired and genetic causes of sensorimotor polyneuropathy, a larger group of genes involved in inherited forms of neuropathy, distal myopathy, and motor neuron disorders were analyzed by next-generation sequencing targeted panels. Results: The patient, affected by progressive distal muscle weakness and hypotrophy, myalgias, dysphonia, dysphagia, respiratory impairment, and sensory abnormalities, harbored the heterozygous c.254C>G (p.S85C) MATR3 substitution. Neurophysiologic assessment revealed a severe sensorimotor polyneuropathy. Variation of fiber size, central nuclei, and nonrimmed vacuoles were evident at muscle biopsy. Discussion: This finding extends the MATR3-associated VCPDM phenotypic spectrum and suggests considering MATR3 analysis in suspected congenital polyneuropathies with odd features, including dysphonia, dysphagia, and respiratory insufficiency.
RESUMO
Becker muscular dystrophy (BMD) is an X-linked neuromuscular disorder due to mutation in the DMD gene, encoding dystrophin. Despite a wide clinical variability, BMD is characterized by progressive muscle degeneration and proximal muscle weakness. Interestingly, a dysregulated expression of muscle-specific microRNAs (miRNAs), called myomirs, has been found in patients affected with muscular dystrophies, although few studies have been conducted in BMD. We analysed the serum expression levels of a subset of myomirs in a cohort of 29 ambulant individuals affected by BMD and further classified according to the degree of alterations at muscle biopsy and in 11 age-matched healthy controls. We found a significant upregulation of serum miR-1, miR-133a, miR-133b and miR-206 in our cohort of BMD patients, supporting the role of these miRNAs in the pathophysiology of the disease, and we identified serum cut-off levels discriminating patients from healthy controls, confiming the potential of circulating miRNAs as promising noninvasive biomarkers. Moreover, serum levels of miR-133b were found to be associated with fibrosis at muscle biopsy and with patients' motor performances, suggesting that miR-133b might be a useful prognostic marker for BMD patients. Taken together, our data showed that these serum myomirs may represent an effective tool that may support stratification of BMD patients, providing the opportunity of both monitoring disease progression and assessing the treatment efficacy in the context of clinical trials.
Assuntos
MicroRNA Circulante , MicroRNAs , Distrofia Muscular de Duchenne , Biomarcadores , Progressão da Doença , Humanos , MicroRNAs/genética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismoRESUMO
Becker muscular dystrophy (BMD) is a severe X-linked muscle disease. Age of onset, clinical variability, speed of progression and affected tissues display wide variability, making a clinical trial design for drug development very complex. The histopathological changes in skeletal muscle tissue are central to the pathogenesis, but they have not been thoroughly elucidated yet. Here we analysed muscle biopsies from a large cohort of BMD patients, focusing our attention on the histopathological muscle parameters, as fibrosis, fatty replacement, fibre cross sectional area, necrosis, regenerating fibres, splitting fibres, internalized nuclei and dystrophy evaluation. We correlated histological parameters with both demographic features and clinical functional evaluations. The most interesting results of our study are the accurate quantification of fibroadipose tissue replacement and the identification of some histopathological aspects that well correlate with clinical performances. Through correlation analysis, we divided our patients into three clusters with well-defined histological and clinical features. In conclusion, this is the first study that analyses in detail the histological characteristics of muscle biopsies in a large cohort of BMD patients, correlating them to a functional impairment. The collection of these data help to better understand the histopathological progression of the disease and can be useful to validate any pharmacological trial in which the modification of muscle biopsy is utilized as outcome measure.
Assuntos
Distrofia Muscular de Duchenne , Biópsia , Estudos de Coortes , Humanos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , RegeneraçãoRESUMO
A large number of neurological disorders can affect renal transplant recipients, potentially leading to disabling or life-threatening complications. Prevention, early diagnosis and appropriate management of these conditions are critical to avoid irreversible lesions. A pivotal role in the pathogenesis of common post-transplant neurological disorders is played by immunosuppressive therapy. The most frequently administered regimen consists of triple immunosuppression, which comprises a calcineurin inhibitor (CNI), a purine synthesis inhibitor and glucocorticoids. Some of these immunosuppressive drugs may lead to neurological signs and symptoms through direct neurotoxic effects, and all of them may be responsible for the development of tumors or opportunistic infections. In this review, after a brief summary of neurotoxic pathogenetic mechanisms encompassing recent advances in the field, we focus on the clinical presentation of more common and severe immunosuppression-related neurological complications, classifying them by characteristics of urgency and anatomic site. Our goal is to provide a general framework that addresses such clinical issues with a multidisciplinary approach, as these conditions require.
Assuntos
Transplante de Rim , Doenças do Sistema Nervoso , Inibidores de Calcineurina/efeitos adversos , Rejeição de Enxerto/prevenção & controle , Humanos , Terapia de Imunossupressão/efeitos adversos , Imunossupressores/efeitos adversos , Transplante de Rim/efeitos adversos , Doenças do Sistema Nervoso/induzido quimicamente , Doenças do Sistema Nervoso/diagnósticoRESUMO
Common Variable Immunodeficiency (CVID) is a group of heterogeneous primary immunodeficiencies sharing defective B lymphocytes maturation and dysregulated immune response and resulting in impaired immunoglobulin production. Clinical picture encompasses increased susceptibility to infections, hematologic malignancies, inflammatory, and autoimmune diseases. Neurological manifestations are uncommon and optic neuritis has been previously reported only in one case with bilateral involvement. We hereby report a case of a 26-year-old man affected by CVID undergoing regular immunoglobulin supplementation, who presented with acute unilateral demyelinating optic neuritis and lymphocytic pleocytosis in the cerebrospinal fluid. A variety of infectious, inflammatory, and neoplastic conditions were excluded and a diagnosis of clinically isolated optic neuritis was made. The patient was treated with a short course of intravenous steroids with complete recovery. Overall, this case expands our current knowledge about clinical spectrum of complications in CVID and highlights the need for further research about this complex disease.