Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Orthop Res ; 42(3): 539-546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37794704

RESUMO

Prosthetic joint infections (PJI) are associated with orthopaedic morbidity and mortality. Mitochondria, the "cell's powerhouses," are thought to play crucial roles in infection response and in increased risk of sepsis mortality. No current research discusses PJI's effect on mitochondrial function and a lack of understanding of immune-infection interactions potentially hinders patient care. The purpose of this pilot study was to evaluate the impact of simulated PJI on local tissue mitochondrial function. Using an established prosthetic implant-associated in vivo model, tissues were harvested from the surgical limb of a methicillin-sensitive Staphylococcus aureus implant-associated infection group (n = 6) and compared to a noninfected group (n = 6) at postoperative day (POD) 21. Using mitochondrial coupling assays, oxygen consumption rate and extracellular acidification rate were assessed in each group. Electron flow through mitochondrial complexes reflected group activity. Electron Paramagnetic Resonance (EPR) spectrometry measured the oxidizing potential of serum samples from infected versus noninfected groups. On POD21, colony-forming units per gram of tissue showed 5 × 109 in the infected group and 101 in the noninfected group (p < 0.0001). Maximal respiration and oxygen consumption due to adenosine triphosphate synthesis were significantly lower in isolated mitochondria from infected limbs (p = 0.04). Both groups had similar complex I, III, IV, and V activity (p > 0.1). Infected group EPR signal intensity reflecting reactive oxygen species levels was 1.31 ± 0.30 compared to 1.16 ± 0.28 (p = 0.73) in the noninfected group. This study highlights PJI's role in mammalian cell mitochondrial dysfunction and oxidative tissue damage, which can help develop interventions to combat PJI.


Assuntos
Artrite Infecciosa , Infecções Relacionadas à Prótese , Infecções Estafilocócicas , Animais , Artrite Infecciosa/etiologia , Mamíferos , Ortopedia , Projetos Piloto , Próteses e Implantes/efeitos adversos , Infecções Relacionadas à Prótese/etiologia , Estudos Retrospectivos , Infecções Estafilocócicas/etiologia , Staphylococcus aureus
2.
Redox Biol ; 67: 102866, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37703667

RESUMO

We recently reported a previously unknown salutary role for xanthine oxidoreductase (XOR) in intravascular heme overload whereby hepatocellular export of XOR to the circulation was identified as a seminal step in affording protection. However, the cellular signaling and export mechanisms underpinning this process were not identified. Here, we present novel data showing hepatocytes upregulate XOR expression/protein abundance and actively release it to the extracellular compartment following exposure to hemopexin-bound hemin, hemin or free iron. For example, murine (AML-12 cells) hepatocytes treated with hemin (10 µM) exported XOR to the medium in the absence of cell death or loss of membrane integrity (2.0 ± 1.0 vs 16 ± 9 µU/mL p < 0.0001). The path of exocytosis was found to be noncanonical as pretreatment of the hepatocytes with Vaculin-1, a lysosomal trafficking inhibitor, and not Brefeldin A inhibited XOR release and promoted intracellular XOR accumulation (84 ± 17 vs 24 ± 8 hemin vs 5 ± 3 control µU/mg). Interestingly, free iron (Fe2+ and Fe3+) induced similar upregulation and release of XOR compared to hemin. Conversely, concomitant treatment with hemin and the classic transition metal chelator DTPA (20 µM) or uric acid completely blocked XOR release (p < 0.01). Our previously published time course showed XOR release from hepatocytes likely required transcriptional upregulation. As such, we determined that both Sp1 and NF-kB were acutely activated by hemin treatment (∼2-fold > controls for both, p < 0.05) and that silencing either or TLR4 with siRNA prevented hemin-induced XOR upregulation (p < 0.01). Finally, to confirm direct action of these transcription factors on the Xdh gene, chromatin immunoprecipitation was performed indicating that hemin significantly enriched (∼5-fold) both Sp1 and NF-kB near the transcription start site. In summary, our study identified a previously unknown pathway by which XOR is upregulated via SP1/NF-kB and subsequently exported to the extracellular environment. This is, to our knowledge, the very first study to demonstrate mechanistically that XOR can be specifically targeted for export as the seminal step in a compensatory response to heme/Fe overload.


Assuntos
Hemina , Xantina Desidrogenase , Animais , Camundongos , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo , Hemina/farmacologia , Ferro , NF-kappa B , Heme , Hepatócitos/metabolismo
3.
Part Fibre Toxicol ; 20(1): 15, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085867

RESUMO

BACKGROUND: Microbial dysbiosis is a potential mediator of air pollution-induced adverse outcomes. However, a systemic comparison of the lung and gut microbiome alterations and lung-gut axis following air pollution exposure is scant. In this study, we exposed male C57BL/6J mice to inhaled air, CB (10 mg/m3), O3 (2 ppm) or CB + O3 mixture for 3 h/day for either one day or four consecutive days and were euthanized 24 h post last exposure. The lung and gut microbiome were quantified by 16 s sequencing. RESULTS: Multiple CB + O3 exposures induced an increase in the lung inflammatory cells (neutrophils, eosinophils and B lymphocytes), reduced absolute bacterial load in the lungs and increased load in the gut. CB + O3 exposure was more potent as it decreased lung microbiome alpha diversity just after a single exposure. CB + O3 co-exposure uniquely increased Clostridiaceae and Prevotellaceae in the lungs. Serum short chain fatty acids (SCFA) (acetate and propionate) were increased significantly only after CB + O3 co-exposure. A significant increase in SCFA producing bacterial families (Ruminococcaceae, Lachnospiraceae, and Eubacterium) were also observed in the gut after multiple exposures. Co-exposure induced significant alterations in the gut derived metabolite receptors/mediator (Gcg, Glp-1r, Cck) mRNA expression. Oxidative stress related mRNA expression in lungs, and oxidant levels in the BALF, serum and gut significantly increased after CB + O3 exposures. CONCLUSION: Our study confirms distinct gut and lung microbiome alterations after CB + O3 inhalation co-exposure and indicate a potential homeostatic shift in the gut microbiome to counter deleterious impacts of environmental exposures on metabolic system.


Assuntos
Microbiota , Ozônio , Camundongos , Animais , Masculino , Ozônio/toxicidade , Fuligem/toxicidade , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , RNA Mensageiro/metabolismo
4.
Redox Biol ; 62: 102636, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36906950

RESUMO

Xanthine oxidase (XO) catalyzes the catabolism of hypoxanthine to xanthine and xanthine to uric acid, generating oxidants as a byproduct. Importantly, XO activity is elevated in numerous hemolytic conditions including sickle cell disease (SCD); however, the role of XO in this context has not been elucidated. Whereas long-standing dogma suggests elevated levels of XO in the vascular compartment contribute to vascular pathology via increased oxidant production, herein, we demonstrate, for the first time, that XO has an unexpected protective role during hemolysis. Using an established hemolysis model, we found that intravascular hemin challenge (40 µmol/kg) resulted in a significant increase in hemolysis and an immense (20-fold) elevation in plasma XO activity in Townes sickle cell phenotype (SS) sickle mice compared to controls. Repeating the hemin challenge model in hepatocyte-specific XO knockout mice transplanted with SS bone marrow confirmed the liver as the source of enhanced circulating XO as these mice demonstrated 100% lethality compared to 40% survival in controls. In addition, studies in murine hepatocytes (AML12) revealed hemin mediates upregulation and release of XO to the medium in a toll like receptor 4 (TLR4)-dependent manner. Furthermore, we demonstrate that XO degrades oxyhemoglobin and releases free hemin and iron in a hydrogen peroxide-dependent manner. Additional biochemical studies revealed purified XO binds free hemin to diminish the potential for deleterious hemin-related redox reactions as well as prevents platelet aggregation. In the aggregate, data herein reveals that intravascular hemin challenge induces XO release by hepatocytes through hemin-TLR4 signaling, resulting in an immense elevation of circulating XO. This increased XO activity in the vascular compartment mediates protection from intravascular hemin crisis by binding and potentially degrading hemin at the apical surface of the endothelium where XO is known to be bound and sequestered by endothelial glycosaminoglycans (GAGs).


Assuntos
Hemólise , Receptor 4 Toll-Like , Xantina Oxidase , Animais , Camundongos , Hemina , Fígado/metabolismo , Camundongos Knockout , Oxidantes , Xantina , Xantina Oxidase/metabolismo , Xantinas
5.
Toxicol Sci ; 191(1): 61-78, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36303316

RESUMO

Air pollution accounts for more than 7 million premature deaths worldwide. Using ultrafine carbon black (CB) and ozone (O3) as a model for an environmental co-exposure scenario, the dose response relationships in acute pulmonary injury and inflammation were determined by generating, characterizing, and comparing stable concentrations of CB aerosols (2.5, 5.0, 10.0 mg/m3), O3 (0.5, 1.0, 2.0 ppm) with mixture CB + O3 (2.5 + 0.5, 5.0 + 1.0, 10.0 + 2.0). C57BL6 male mice were exposed for 3 h by whole body inhalation and acute toxicity determined after 24 h. CB itself did not cause any alteration, however, a dose response in pulmonary injury/inflammation was observed with O3 and CB + O3. This increase in response with mixtures was not dependent on the uptake but was due to enhanced reactivity of the particles. Benchmark dose modeling showed several-fold increase in potency with CB + O3 compared with CB or O3 alone. Principal component analysis provided insight into response relationships between various doses and treatments. There was a significant correlation in lung responses with charge-based size distribution, total/alveolar deposition, oxidant generation, and antioxidant depletion potential. Lung tissue gene/protein response demonstrated distinct patterns that are better predicted by either particle dose/aerosol responses (interleukin-1ß, keratinocyte chemoattractant, transforming growth factor beta) or particle reactivity (thymic stromal lymphopoietin, interleukin-13, interleukin-6). Hierarchical clustering showed a distinct signature with high dose and a similarity in mRNA expression pattern of low and medium doses of CB + O3. In conclusion, we demonstrate that the biological outcomes from CB + O3 co-exposure are significantly greater than individual exposures over a range of aerosol concentrations and aerosol characteristics can predict biological outcome.


Assuntos
Poluentes Atmosféricos , Pneumopatias , Lesão Pulmonar , Ozônio , Pneumonia , Camundongos , Animais , Masculino , Ozônio/toxicidade , Fuligem/toxicidade , Lesão Pulmonar/metabolismo , Aerossóis e Gotículas Respiratórios , Pneumopatias/induzido quimicamente , Pulmão , Pneumonia/metabolismo , Inflamação/metabolismo , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/metabolismo
6.
Redox Biol ; 47: 102161, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34624601

RESUMO

Oxidation of engineered nanomaterials during application in various industrial sectors can alter their toxicity. Oxidized nanomaterials also have widespread industrial and biomedical applications. In this study, we evaluated the cardiopulmonary hazard posed by these nanomaterials using oxidized carbon black (CB) nanoparticles (CBox) as a model particle. Particle surface chemistry was characterized by X-ray photo electron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR). Colloidal characterization and in vitro dosimetry modeling (particle kinetics, fate and transport modeling) were performed. Lung inflammation was assessed following oropharyngeal aspiration of CB or oxidized CBox particles (20 µg per mouse) in C57BL/6J mice. Toxicity and functional assays were also performed on murine macrophage (RAW 264.7) and endothelial cell lines (C166) with and without pharmacological inhibitors. Oxidant generation was assessed by electron paramagnetic resonance spectroscopy (EPR) and via flow cytometry. Endothelial toxicity was evaluated by quantifying pro-inflammatory mRNA expression, monolayer permeability, and wound closure. XPS and FTIR spectra indicated surface modifications, the appearance of new functionalities, and greater oxidative potential (both acellular and in vitro) of CBox particles. Treatment with CBox demonstrated greater in vivo inflammatory potentials (lavage neutrophil counts, secreted cytokine, and lung tissue mRNA expression) and air-blood barrier disruption (lavage proteins). Oxidant-dependent pro-inflammatory signaling in macrophages led to the production of CXCR3 ligands (CXCL9,10,11). Conditioned medium from CBox-treated macrophages induced significant elevation in endothelial cell pro-inflammatory mRNA expression, enhanced monolayer permeability and impairment of scratch healing in CXCR3 dependent manner. In summary, this study mechanistically demonstrated an increased biological potency of CBox particles and established the role of macrophage-released chemical mediators in endothelial damage.


Assuntos
Nanopartículas , Fuligem , Animais , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Quimiocinas , Fuligem/toxicidade
7.
J Clin Invest ; 130(10): 5397-5412, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32644975

RESUMO

Alarmins, sequestered self-molecules containing damage-associated molecular patterns, are released during tissue injury to drive innate immune cell proinflammatory responses. Whether endogenous negative regulators controlling early immune responses are also released at the site of injury is poorly understood. Herein, we establish that the stromal cell-derived alarmin interleukin 33 (IL-33) is a local factor that directly restricts the proinflammatory capacity of graft-infiltrating macrophages early after transplantation. By assessing heart transplant recipient samples and using a mouse heart transplant model, we establish that IL-33 is upregulated in allografts to limit chronic rejection. Mouse cardiac transplants lacking IL-33 displayed dramatically accelerated vascular occlusion and subsequent fibrosis, which was not due to altered systemic immune responses. Instead, a lack of graft IL-33 caused local augmentation of proinflammatory iNOS+ macrophages that accelerated graft loss. IL-33 facilitated a metabolic program in macrophages associated with reparative and regulatory functions, and local delivery of IL-33 prevented the chronic rejection of IL-33-deficient cardiac transplants. Therefore, IL-33 represents what we believe is a novel regulatory alarmin in transplantation that limits chronic rejection by restraining the local activation of proinflammatory macrophages. The local delivery of IL-33 in extracellular matrix-based materials may be a promising biologic for chronic rejection prophylaxis.


Assuntos
Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Transplante de Coração/efeitos adversos , Interleucina-33/imunologia , Macrófagos/imunologia , Alarminas/imunologia , Aloenxertos , Animais , Criança , Modelos Animais de Doenças , Rejeição de Enxerto/etiologia , Sobrevivência de Enxerto/imunologia , Humanos , Interleucina-33/administração & dosagem , Interleucina-33/deficiência , Interleucina-33/genética , Ativação de Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Miocárdio/imunologia , Miocárdio/patologia , Regulação para Cima
8.
Artigo em Inglês | MEDLINE | ID: mdl-32169373

RESUMO

OBJECTIVE: Ex vivo lung perfusion creates a proinflammatory environment leading to deterioration in graft quality that may contribute to post-transplant graft dysfunction. Triptolide has been shown to have a therapeutic potential in various disease states because of its anti-inflammatory properties. On this basis, we investigated the impact of triptolide on graft preservation during ex vivo lung perfusion and associated post-transplant outcomes in a rat transplant model. METHODS: We performed rat normothermic ex vivo lung perfusion with acellular Steen solution containing 100 nM triptolide for 4 hours and compared the data with untreated lungs. Orthotopic single lung transplantation after ex vivo lung perfusion was performed. RESULTS: Physiologic and functional parameters of lung grafts on ex vivo lung perfusion with triptolide were better than those without treatment. Graft glucose consumption was significantly attenuated on ex vivo lung perfusion with triptolide via inhibition of hypoxia signaling resulting in improved mitochondrial function and reduced oxidative stress. Also, intragraft inflammation was markedly lower in triptolide-treated lungs because of inhibition of nuclear factor-κB signaling. Furthermore, post-transplant graft function and inflammatory events were significantly improved in the triptolide group compared with the untreated group. CONCLUSIONS: Treatment of lung grafts with triptolide during ex vivo lung perfusion may serve to enhance graft preservation and improve graft protection resulting in better post-transplant outcomes.

9.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L580-L591, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32073901

RESUMO

Primary graft dysfunction (PGD) is directly related to ischemia-reperfusion (I/R) injury and a major obstacle in lung transplantation (LTx). Nitrite (NO2-), which is reduced in vivo to form nitric oxide (NO), has recently emerged as an intrinsic signaling molecule with a prominent role in cytoprotection against I/R injury. Using a murine model, we provide the evidence that nitrite mitigated I/R-induced injury by diminishing infiltration of immune cells in the alveolar space, reducing pulmonary edema, and improving pulmonary function. Ultrastructural studies support severe mitochondrial impairment in the lung undergoing I/R injury, which was significantly protected by nitrite treatment. Nitrite also abrogated the increased pulmonary vascular permeability caused by I/R. In vitro, hypoxia-reoxygenation (H/R) exacerbated cell death in lung epithelial and microvascular endothelial cells. This contributed to mitochondrial dysfunction as characterized by diminished complex I activity and mitochondrial membrane potential but increased mitochondrial reactive oxygen species (mtROS). Pretreatment of cells with nitrite robustly attenuated mtROS production through modulation of complex I activity. These findings illustrate a potential novel mechanism in which nitrite protects the lung against I/R injury by regulating mitochondrial bioenergetics and vascular permeability.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Nitritos/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Células A549 , Animais , Linhagem Celular Tumoral , Citoproteção/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Pulmão/metabolismo , Transplante de Pulmão/métodos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Disfunção Primária do Enxerto/tratamento farmacológico , Disfunção Primária do Enxerto/metabolismo , Edema Pulmonar/tratamento farmacológico , Edema Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo
10.
Front Oncol ; 8: 97, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29682483

RESUMO

Heat-shock factor-1 (HSF-1) is an important transcription factor that regulates pathogenesis of many human diseases through its extensive transcriptional regulation. Especially, it shows pleiotropic effects in human cancer, and hence it has recently received increased attention of cancer researchers. After myriad investigations on HSF-1, the field has advanced to the phase where there is consensus that finding a potent and selective pharmacological inhibitor for this transcription factor will be a major break-through in the treatment of various human cancers. Presently, all reported inhibitors have their limitations, made evident at different stages of clinical trials. This brief account summarizes the advances with tested natural products as HSF-1 inhibitors and highlights the necessity of phytochemistry in this endeavor of discovering a potent pharmacological HSF-1 inhibitor.

11.
Biochem Biophys Rep ; 5: 96-104, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26709389

RESUMO

In humans, sulfite is generated endogenously by the metabolism of sulfur containing amino acids such as methionine and cysteine. Sulfite is also formed from exposure to sulfur dioxide, one of the major environmental pollutants. Sulfite is used as an antioxidant and preservative in dried fruits, vegetables, and beverages such as wine. Sulfite is also used as a stabilizer in many drugs. Sulfite toxicity has been associated with allergic reactions characterized by sulfite sensitivity, asthma, and anaphylactic shock. Sulfite is also toxic to neurons and cardiovascular cells. Recent studies suggest that the cytotoxicity of sulfite is mediated by free radicals; however, molecular mechanisms involved in sulfite toxicity are not fully understood. Cytochrome c (cyt c) is known to participate in mitochondrial respiration and has antioxidant and peroxidase activities. Studies were performed to understand the related mechanism of oxidation of sulfite and radical generation by ferric cytochrome c (Fe3+ cyt c) in the absence and presence of H2O2. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with sulfite, Fe3+ cyt c, and H2O2. An EPR spectrum corresponding to the sulfite radical adducts of DMPO (DMPO-SO3-) was obtained. The amount of DMPO-SO3- formed from the oxidation of sulfite by the Fe3+ cyt c increased with sulfite concentration. In addition, the amount of DMPO-SO3- formed by the peroxidase activity of Fe3+ cyt c also increased with sulfite and H2O2 concentration. From these results, we propose a mechanism in which the Fe3+ cyt c and its peroxidase activity oxidizes sulfite to sulfite radical. Our results suggest that Fe3+ cyt c could have a novel role in the deleterious effects of sulfite in biological systems due to increased production of sulfite radical. It also shows that the increased production of sulfite radical may be responsible for neurotoxicity and some of the injuries which occur to humans born with molybdenum cofactor and sulfite oxidase deficiencies.

12.
Oxid Med Cell Longev ; 2015: 424751, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26508994

RESUMO

Cardiomyopathies can result from mutations in genes encoding sarcomere proteins including MYBPC3, which encodes cardiac myosin binding protein-C (cMyBP-C). However, whether oxidative stress is augmented due to contractile dysfunction and cardiomyocyte damage in MYBPC3-mutated cardiomyopathies has not been elucidated. To determine whether oxidative stress markers were elevated in MYBPC3-mutated cardiomyopathies, a previously characterized 3-month-old mouse model of dilated cardiomyopathy (DCM) expressing a homozygous MYBPC3 mutation (cMyBP-C((t/t))) was used, compared to wild-type (WT) mice. Echocardiography confirmed decreased percentage of fractional shortening in DCM versus WT hearts. Histopathological analysis indicated a significant increase in myocardial disarray and fibrosis while the second harmonic generation imaging revealed disorganized sarcomeric structure and myocyte damage in DCM hearts when compared to WT hearts. Intriguingly, DCM mouse heart homogenates had decreased glutathione (GSH/GSSG) ratio and increased protein carbonyl and lipid malondialdehyde content compared to WT heart homogenates, consistent with elevated oxidative stress. Importantly, a similar result was observed in human cardiomyopathy heart homogenate samples. These results were further supported by reduced signals for mitochondrial semiquinone radicals and Fe-S clusters in DCM mouse hearts measured using electron paramagnetic resonance spectroscopy. In conclusion, we demonstrate elevated oxidative stress in MYPBC3-mutated DCM mice, which may exacerbate the development of heart failure.


Assuntos
Cardiomiopatia Dilatada/patologia , Proteínas de Transporte/genética , Estresse Oxidativo , Adolescente , Adulto , Animais , Cardiomiopatia Dilatada/genética , Modelos Animais de Doenças , Ecocardiografia , Espectroscopia de Ressonância de Spin Eletrônica , Feminino , Glutationa/metabolismo , Coração/fisiopatologia , Humanos , Masculino , Malondialdeído/metabolismo , Camundongos , Pessoa de Meia-Idade , Mutação , Miocárdio/metabolismo , Carbonilação Proteica , Adulto Jovem
13.
Cardiovasc Res ; 97(1): 33-43, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22977010

RESUMO

AIMS: The role of endothelial nitric oxide synthase (eNOS)/NO signalling is well documented in late ischaemic preconditioning (IPC); however, the role of eNOS and its activation in early IPC remains controversial. This study investigates the role of eNOS in early IPC and the signalling pathways and molecular interactions that regulate eNOS activation during early IPC. METHODS AND RESULTS: Rat hearts were subjected to 30-min global ischaemia and reperfusion (I/R) with or without IPC (three cycles 5-min I and 5-min R) in the presence or absence of the NOS inhibitor l-NAME, phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (LY), and protein kinase A (PKA) inhibitor H89 during IPC induction or prior endothelial permeablization. IPC improved post-ischaemic contractile function and reduced infarction compared with I/R with this being abrogated by l-NAME or endothelial permeablization. eNOS(Ser1176), Akt(Ser473), and PKA(Thr197) phosphorylation was increased following IPC. I/R decreased eNOS(Ser1176) phosphorylation, whereas IPC increased it. Mass spectroscopy confirmed eNOS(Ser1176) phosphorylation and quantitative Western blots showed ∼24% modification of eNOS(Ser1176) following IPC. Immunoprecipitation demonstrated eNOS, Akt, and PKA complexation. Immunohistology showed IPC-induced Akt and PKA phosphorylation in cardiomyocytes and endothelium. With eNOS activation, IPC increased NO production as measured by electron paramagnetic resonance spin trapping and fluorescence microscopy. LY or H89 not only decreased Akt(Ser473) or PKA(Thr197) phosphorylation, respectively, but also abolished IPC-induced preservation of eNOS and eNOS(Ser1176) phosphorylation as well as cardioprotection. CONCLUSION: Thus, Akt- and PKA-mediated eNOS activation, with phosphorylation near the C-terminus, is critical for early IPC-induced cardioprotection, with eNOS-derived NO from the endothelium serving a critical role.


Assuntos
Vasos Coronários/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Endoteliais/enzimologia , Precondicionamento Isquêmico , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Western Blotting , Vasos Coronários/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Modelos Animais de Doenças , Espectroscopia de Ressonância de Spin Eletrônica , Células Endoteliais/efeitos dos fármacos , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Imunoprecipitação , Masculino , Espectrometria de Massas , Microscopia de Fluorescência , Modelos Moleculares , Contração Miocárdica , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/química , Perfusão , Fosforilação , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Serina , Transdução de Sinais , Fatores de Tempo
14.
Am J Physiol Heart Circ Physiol ; 304(2): H294-302, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23161879

RESUMO

The GTP-binding protein Rac regulates diverse cellular functions including activation of NADPH oxidase, a major source of superoxide production (O(2)(·-)). Rac1-mediated NADPH oxidase activation is increased after myocardial infarction (MI) and heart failure both in animals and humans; however, the impact of increased myocardial Rac on impending ischemia-reperfusion (I/R) is unknown. A novel transgenic mouse model with cardiac-specific overexpression of constitutively active mutant form of Zea maize Rac D (ZmRacD) gene has been reported with increased myocardial Rac-GTPase activity and O(2)(·-) generation. The goal of the present study was to determine signaling pathways related to increased myocardial ZmRacD and to what extent hearts with increased ZmRacD proteins are susceptible to I/R injury. The effect of myocardial I/R was examined in young adult wild-type (WT) and ZmRacD transgenic (TG) mice. In vitro reversible myocardial I/R for postischemic cardiac function and in vivo regional myocardial I/R for MI were performed. Following 20-min global ischemia and 45-min reperfusion, postischemic cardiac contractile function and heart rate were significantly reduced in TG hearts compared with WT hearts. Importantly, acute regional myocardial I/R (30-min ischemia and 24-h reperfusion) caused significantly larger MI in TG mice compared with WT mice. Western blot analysis of cardiac homogenates revealed that increased myocardial ZmRacD gene expression is associated with concomitant increased levels of NADPH oxidase subunit gp91(phox), O(2)(·-), and P(21)-activated kinase. Thus these findings provide direct evidence that increased levels of active myocardial Rac renders the heart susceptible to increased postischemic contractile dysfunction and MI following acute I/R.


Assuntos
Traumatismo por Reperfusão Miocárdica/enzimologia , Miocárdio Atordoado/enzimologia , Miócitos Cardíacos/enzimologia , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Genótipo , Frequência Cardíaca , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio Atordoado/genética , Miocárdio Atordoado/patologia , Miocárdio Atordoado/fisiopatologia , Miócitos Cardíacos/patologia , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Fenótipo , Transdução de Sinais , Superóxidos/metabolismo , Fatores de Tempo , Regulação para Cima , Quinases Ativadas por p21/metabolismo , Proteínas rac de Ligação ao GTP/genética
15.
J Magn Reson ; 216: 21-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22296801

RESUMO

In vivo mapping of alterations in redox status is important for understanding organ specific pathology and disease. While electron paramagnetic resonance imaging (EPRI) enables spatial mapping of free radicals, it does not provide anatomic visualization of the body. Proton MRI is well suited to provide anatomical visualization. We applied EPR/NMR co-imaging instrumentation to map and monitor the redox state of living mice under normal or oxidative stress conditions induced by secondhand cigarette smoke (SHS) exposure. A hybrid co-imaging instrument, EPRI (1.2 GHz)/proton MRI (16.18 MHz), suitable for whole-body co-imaging of mice was utilized with common magnet and gradients along with dual EPR/NMR resonators that enable co-imaging without sample movement. The metabolism of the nitroxide probe, 3-carbamoyl-proxyl (3-CP), was used to map the redox state of control and SHS-exposed mice. Co-imaging allowed precise 3D mapping of radical distribution and reduction in major organs such as the heart, lungs, liver, bladder and kidneys. Reductive metabolism was markedly decreased in SHS-exposed mice and EPR/NMR co-imaging allowed quantitative assessment of this throughout the body. Thus, in vivo EPR/NMR co-imaging enables in vivo organ specific mapping of free radical metabolism and redox stress and the alterations that occur in the pathogenesis of disease.


Assuntos
Nicotiana/química , Fumaça/efeitos adversos , Animais , Câmaras de Exposição Atmosférica , Óxidos N-Cíclicos , Campos Eletromagnéticos , Espectroscopia de Ressonância de Spin Eletrônica , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxidos de Nitrogênio/química , Especificidade de Órgãos , Oxirredução , Estresse Oxidativo , Pirrolidinas , Marcadores de Spin , Distribuição Tecidual
16.
Chem Res Toxicol ; 22(8): 1427-34, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19785463

RESUMO

The ability of three dithiolethione cancer chemopreventives, oltipraz 1, anetholedithione (ADT) 2, 1,2-dithiole-3-thione (D3T) 3, and the major metabolite, 4, of 1, to induce the cytoprotective enzyme NQO1 in Hepa 1c1c7 cells and the inhibition of this induction by catalase are demonstrated. The ability of 1, 3, and 4 to form O(2)(*) has been reported, and it is here demonstrated that 2 decomposes in the presence of GSH to form, upon addition of the nitrone spin trap DMPO, the DMPO-OH adduct that is detectable by EPR. Decomposition of 2 in the presence of GSH elicits, upon the addition of hydroethidine and excitation at 510 nm, fluorescence at 580 nm that is diminished by the addition of superoxide dismutase. The compound 4, is a product of the reduction of 1, and it is demonstrated that 2 and 3 decompose in the presence of reductants such as thiolates and NaBH(4), followed by addition of CH(3)I, to form the dimethylated products of reductive cleavage of the S(1)-S(2) bond. The same products are isolated subsequent to lysis in buffer containing CH(3)I of Hepa 1c1c7 cells treated with 2 or 3. Reductive cleavage of 2 and 3 in aqueous ethanol by NaBH(4) in an argon atmosphere, followed by acidic destruction of remaining borohydride and neutralization and introduction of O(2) results in the reformation of 2 and 3 to the extent of 80 and 33%, respectively. The data in toto are consistent with a model in which dithiolethiones, generally, undergo reductive cleavage in Hepa 1c1c7 cells, thereby resulting in the generation of O(2)(*) that dismutates to H(2)O(2), that subsequently, by direct or indirect means, effects the nuclear translocation of transcription factor Nrf2, that upregulates phase 2 enzyme expression.


Assuntos
Antineoplásicos/farmacologia , Indução Enzimática/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Pirazinas/farmacologia , Tionas/química , Tiofenos/farmacologia , Animais , Antioxidantes , Óxidos N-Cíclicos/farmacologia , Diglicerídeos/farmacologia , Hepatócitos , Humanos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Neoplasias/patologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Tionas/farmacologia
17.
Free Radic Biol Med ; 43(7): 1076-85, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17761303

RESUMO

The major metabolite of the cancer chemopreventive agent oltipraz, a pyrrolopyrazine thione (PPD), has been shown to be a phase 2 enzyme inducer, an activity thought to be key to the cancer chemopreventive action of the parent compound. In cells, mitochondria are the major source of reactive oxygen species (ROS) and cytochrome c (cyt c) is known to participate in mitochondrial electron transport and confer antioxidant and peroxidase activities. To understand possible mechanisms by which PPD acts as a phase 2 enzyme inducer, a study of its interaction with cyt c was undertaken. UV-visible spectroscopic results demonstrate that PPD is capable of reducing oxidized cyt c. The reduced cyt c is stable for a long period of time in the absence of an oxidizing agent. In the presence of ferricyanide, the reduced cyt c is rapidly oxidized back to its oxidized form. Further, UV-visible spectroscopic studies show that during the reduction process the coordination environment and redox state of iron in cyt c are changed. Low-temperature EPR studies show that during the reduction process, the heme iron changes from a low-spin state of s = 1/2 to a low-spin state of s = 0. Room-temperature EPR studies demonstrate that PPD inhibits the peroxidase activity of cyt c. EPR spin trapping experiments using DMPO show that PPD inhibits the superoxide radical scavenging activity of oxidized cyt c. From these results, we propose that PPD interacts with cyt c, binding to and then reducing the heme, and this may enhance ROS levels in mitochondria. This in turn could contribute to the mechanism by which the parent compound, oltipraz, might trigger the cancer chemopreventive increase in transcription of phase 2 enzymes. The modifications of cyt c function by the oltipraz metabolite may have implications for the regulation of apoptotic cell death.


Assuntos
Anticarcinógenos/farmacologia , Antioxidantes/metabolismo , Citocromos c/metabolismo , Peroxidase/metabolismo , Pirazinas/farmacologia , Animais , Quimioprevenção , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Coração/fisiologia , Cavalos , Espectrometria de Massas , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Oxirredução , Espécies Reativas de Oxigênio , Espectrofotometria Ultravioleta , Tionas , Tiofenos
18.
Chem Res Toxicol ; 18(6): 970-5, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15962931

RESUMO

The major metabolite of the cancer chemopreventive oltipraz (1), a pyrrolopyrazine thione, 4, has been shown to be a phase two enzyme inducer, an activity thought to be a key to the cancer chemopreventive action of the parent compound. To understand the possible mechanism by which the metabolite acts as an inducer, a study of its potential to generate free radicals was undertaken. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with 7-methyl-6,8-bis-methyldisulfanyl-pyrrolo[1,2-a]pyrazine, 5, a synthetic precursor to the metabolite in aqueous and organic solvents. In the presence of GSH, which rapidly liberates the metabolite from the precursor, a 1:2:2:1 quartet spectrum with hyperfine coupling constants a(N) = a(H) = 14.9 G, characteristic of the hydroxyl radical adduct of DMPO, was observed in the presence of oxygen. No signal was seen under anaerobic conditions. This signal was quenched by the addition of the superoxide scavenging enzyme Cu,Zn-superoxide dismutase. In aqueous dimethyl sulfoxide (80 vol % DMSO), the metabolite precursor 5, GSH, and DMPO exhibited an EPR spectrum with the hyperfine values of a(N) = 12.7 G, a(H1) = 10.3 G, and a(H2) = 1.3 G, corresponding to the superoxide radical adduct of DMPO. The amount of superoxide radical adduct formed from the reaction of 5 and GSH increases with GSH concentration in phosphate buffer solution. Kinetic studies show that the formation of superoxide radical anion is first-order with respect to GSH. The formation of superoxide radical anion by the metabolite in the presence of GSH is linear at lower concentrations of 5 but becomes nonlinear at high concentrations. Overall, these studies suggest a mechanism in which GSH reduces the metabolite 4 to 4. , presumably a radical anion, that in turn donates an electron to oxygen resulting in superoxide radical anion formation. This GSH stimulated redox cycle of the metabolite 4 suggests a possible mechanism by which the parent compound oltipraz might effect the cancer chemopreventive increase in the transcription of phase two enzymes that is mediated by transcription factor Nrf2.


Assuntos
Anticarcinógenos/metabolismo , Glutationa/metabolismo , Pirazinas/metabolismo , Superóxidos/metabolismo , Animais , Bovinos , Espectroscopia de Ressonância de Spin Eletrônica , Tionas , Tiofenos
19.
Arch Biochem Biophys ; 435(1): 83-8, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15680910

RESUMO

The cancer chemopreventive actions of oltipraz, a member of a class of 1,2-dithiolethiones, have been primarily associated with the induction of phase 2 enzymes mediated by a 41bp enhancer element known as the anti-oxidant response element in the promoter regions of many phase 2 genes. It has been suggested that oxygen radical formation by oltipraz may be a critical mechanism by which it exerts chemoprevention. Therefore, in the present work, studies were performed to directly determine if oltipraz generates oxygen free radicals. Electron paramagnetic resonance (EPR) spin trapping demonstrated that oltipraz slowly reacts in the presence of oxygen to generate the superoxide anion radical. This formation of superoxide by oltipraz was concentration- and time-dependent. EPR oximetry studies showed that oxygen was also slowly consumed paralleling the process of superoxide formation. Thus, oltipraz induced superoxide formation occurs and could be involved in the mechanism by which it exerts chemoprotection.


Assuntos
Rim/metabolismo , Oxigênio/química , Oxigênio/metabolismo , Pirazinas/administração & dosagem , Pirazinas/química , Superóxidos/síntese química , Superóxidos/metabolismo , Antineoplásicos/administração & dosagem , Linhagem Celular , Quimioprevenção/métodos , Relação Dose-Resposta a Droga , Radicais Livres/síntese química , Radicais Livres/metabolismo , Humanos , Tionas , Tiofenos
20.
Nature ; 416(6882): 763-7, 2002 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-11961560

RESUMO

The 26S proteasome is the chief site of regulatory protein turnover in eukaryotic cells. It comprises one 20S catalytic complex (composed of four stacked rings of seven members) and two axially positioned 19S regulatory complexes (each containing about 18 subunits) that control substrate access to the catalytic chamber. In most cases, targeting to the 26S proteasome depends on tagging of the substrate with a specific type of polyubiquitin chain. Recognition of this signal is followed by substrate unfolding and translocation, which are presumably catalysed by one or more of six distinct AAA ATPases located in the base-a ring-like 19S subdomain that abuts the axial pore of the 20S complex and exhibits chaperone activity in vitro. Despite the importance of polyubiquitin chain recognition in proteasome function, the site of this signal's interaction with the 19S complex has not been identified previously. Here we use crosslinking to a reactive polyubiquitin chain to show that a specific ATPase subunit, S6' (also known as Rpt5), contacts the bound chain. The interaction of this signal with 26S proteasomes is modulated by ATP hydrolysis. Our results suggest that productive recognition of the proteolytic signal, as well as proteasome assembly and substrate unfolding, are ATP-dependent events.


Assuntos
Adenosina Trifosfatases/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma , Processamento de Proteína Pós-Traducional , Adenosina Trifosfatases/química , Trifosfato de Adenosina/metabolismo , Animais , Bovinos , Reagentes de Ligações Cruzadas , Espectroscopia de Ressonância de Spin Eletrônica , Hidrólise , Ligação Proteica , Subunidades Proteicas , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA