Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(8): 1819-1829, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38373112

RESUMO

Phosphatidylinositol-3-kinase Alpha (PI3Kα) is a lipid kinase which regulates signaling pathways involved in cell proliferation. Dysregulation of these pathways promotes several human cancers, pushing for the development of anticancer drugs to target PI3Kα. One such medicinal chemistry campaign at Novartis led to the discovery of BYL719 (Piqray, Alpelicib), a PI3Kα inhibitor approved by the FDA in 2019 for treatment of HR+/HER2-advanced breast cancer with a PIK3CA mutation. Structure-based drug design played a key role in compound design and optimization throughout the discovery process. However, further characterization of potency drivers via structural dynamics and energetic analyses can be advantageous for ensuing PI3Kα programs. Here, our goal is to employ various in-silico techniques, including molecular simulations and machine learning, to characterize 14 ligands from the BYL719 analogs and predict their binding affinities. The structural insights from molecular simulations suggest that although the ligand-hinge interaction is the primary driver of ligand stability at the pocket, the R group positioning at C2 or C6 of pyridine/pyrimidine also plays a major role. Binding affinities predicted via thermodynamic integration (TI) are in good agreement with previously reported IC50s. Yet, computationally demanding techniques such as TI might not always be the most efficient approach for affinity prediction, as in our case study, fast high-throughput techniques were capable of classifying compounds as active or inactive, and one docking approach showed accuracy comparable to TI.


Assuntos
Antineoplásicos , Neoplasias da Mama , Tiazóis , Humanos , Feminino , Fosfatidilinositol 3-Quinase , Ligantes , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico
2.
J Chem Theory Comput ; 19(23): 8901-8918, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38019969

RESUMO

Protein lipidations are vital co/post-translational modifications that tether lipid tails to specific protein amino acids, allowing them to anchor to biological membranes, switch their subcellular localization, and modulate association with other proteins. Such lipidations are thus crucial for multiple biological processes including signal transduction, protein trafficking, and membrane localization and are implicated in various diseases as well. Examples of lipid-anchored proteins include the Ras family of proteins that undergo farnesylation; actin and gelsolin that are myristoylated; phospholipase D that is palmitoylated; glycosylphosphatidylinositol-anchored proteins; and others. Here, we develop parameters for cysteine-targeting farnesylation, geranylgeranylation, and palmitoylation, as well as glycine-targeting myristoylation for the latest version of the Martini 3 coarse-grained force field. The parameters are developed using the CHARMM36m all-atom force field parameters as reference. The behavior of the coarse-grained models is consistent with that of the all-atom force field for all lipidations and reproduces key dynamical and structural features of lipid-anchored peptides, such as the solvent-accessible surface area, bilayer penetration depth, and representative conformations of the anchors. The parameters are also validated in simulations of the lipid-anchored peripheral membrane proteins Rheb and Arf1, after comparison with independent all-atom simulations. The parameters, along with mapping schemes for the popular martinize2 tool, are available for download at 10.5281/zenodo.7849262 and also as supporting information.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Termodinâmica , Membrana Celular , Proteínas , Processamento de Proteína Pós-Traducional
3.
Nature ; 609(7926): 416-423, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35830882

RESUMO

RAS-MAPK signalling is fundamental for cell proliferation and is altered in most human cancers1-3. However, our mechanistic understanding of how RAS signals through RAF is still incomplete. Although studies revealed snapshots for autoinhibited and active RAF-MEK1-14-3-3 complexes4, the intermediate steps that lead to RAF activation remain unclear. The MRAS-SHOC2-PP1C holophosphatase dephosphorylates RAF at serine 259, resulting in the partial displacement of 14-3-3 and RAF-RAS association3,5,6. MRAS, SHOC2 and PP1C are mutated in rasopathies-developmental syndromes caused by aberrant MAPK pathway activation6-14-and SHOC2 itself has emerged as potential target in receptor tyrosine kinase (RTK)-RAS-driven tumours15-18. Despite its importance, structural understanding of the SHOC2 holophosphatase is lacking. Here we determine, using X-ray crystallography, the structure of the MRAS-SHOC2-PP1C complex. SHOC2 bridges PP1C and MRAS through its concave surface and enables reciprocal interactions between all three subunits. Biophysical characterization indicates a cooperative assembly driven by the MRAS GTP-bound active state, an observation that is extendible to other RAS isoforms. Our findings support the concept of a RAS-driven and multi-molecular model for RAF activation in which individual RAS-GTP molecules recruit RAF-14-3-3 and SHOC2-PP1C to produce downstream pathway activation. Importantly, we find that rasopathy and cancer mutations reside at protein-protein interfaces within the holophosphatase, resulting in enhanced affinities and function. Collectively, our findings shed light on a fundamental mechanism of RAS biology and on mechanisms of clinically observed enhanced RAS-MAPK signalling, therefore providing the structural basis for therapeutic interventions.


Assuntos
Cristalografia por Raios X , Peptídeos e Proteínas de Sinalização Intracelular , Complexos Multiproteicos , Proteína Fosfatase 1 , Proteínas ras , Proteínas 14-3-3 , Guanosina Trifosfato/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Complexos Multiproteicos/química , Mutação , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Quinases raf , Proteínas ras/química , Proteínas ras/metabolismo
4.
J Phys Chem B ; 126(7): 1504-1519, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35142524

RESUMO

Ras proteins are membrane-anchored GTPases that regulate key cellular signaling networks. It has been recently shown that different anionic lipid types can affect the properties of Ras in terms of dimerization/clustering on the cell membrane. To understand the effects of anionic lipids on key spatiotemporal properties of dimeric K-Ras4B, we perform all-atom molecular dynamics simulations of the dimer K-Ras4B in the presence and absence of Raf[RBD/CRD] effectors on two model anionic lipid membranes: one containing 78% mol DOPC, 20% mol DOPS, and 2% mol PIP2 and another one with enhanced concentration of anionic lipids containing 50% mol DOPC, 40% mol DOPS, and 10% mol PIP2. Analysis of our results unveils the orientational space of dimeric K-Ras4B and shows that the stability of the dimer is enhanced on the membrane containing a high concentration of anionic lipids in the absence of Raf effectors. This enhanced stability is also observed in the presence of Raf[RBD/CRD] effectors although it is not influenced by the concentration of anionic lipids in the membrane, but rather on the ability of Raf[CRD] to anchor to the membrane. We generate dominant K-Ras4B conformations by Markov state modeling and yield the population of states according to the K-Ras4B orientation on the membrane. For the membrane containing anionic lipids, we observe correlations between the diffusion of K-Ras4B and PIP2 and anchoring of anionic lipids to the Raf[CRD] domain. We conclude that the presence of effectors with the Raf[CRD] domain anchoring on the membrane as well as the membrane composition both influence the conformational stability of the K-Ras4B dimer, enabling the preservation of crucial interface interactions.


Assuntos
Simulação de Dinâmica Molecular , Proteínas ras , Lipídeos , Conformação Molecular , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas ras/metabolismo
5.
Chem Sci ; 12(4): 1513-1527, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35356437

RESUMO

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of Mpro, a cysteine protease, have been determined, facilitating structure-based drug design. Mpro plays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins. In addition to the catalytic dyad His41-Cys145, Mpro contains multiple histidines including His163, His164, and His172. The protonation states of these histidines and the catalytic nucleophile Cys145 have been debated in previous studies of SARS-CoV Mpro, but have yet to be investigated for SARS-CoV-2. In this work we have used molecular dynamics simulations to determine the structural stability of SARS-CoV-2 Mpro as a function of the protonation assignments for these residues. We simulated both the apo and inhibitor-bound enzyme and found that the conformational stability of the binding site, bound inhibitors, and the hydrogen bond networks of Mpro are highly sensitive to these assignments. Additionally, the two inhibitors studied, the peptidomimetic N3 and an α-ketoamide, display distinct His41/His164 protonation-state-dependent stabilities. While the apo and the N3-bound systems favored N δ (HD) and N ϵ (HE) protonation of His41 and His164, respectively, the α-ketoamide was not stably bound in this state. Our results illustrate the importance of using appropriate histidine protonation states to accurately model the structure and dynamics of SARS-CoV-2 Mpro in both the apo and inhibitor-bound states, a necessary prerequisite for drug-design efforts.

6.
bioRxiv ; 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32935106

RESUMO

The main protease (M pro ) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of M pro , a cysteine protease, have been determined, facilitating structure-based drug design. M pro plays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins. In addition to the catalytic dyad His41-Cys145, M pro contains multiple histidines including His163, His164, and His172. The protonation states of these histidines and the catalytic nu-cleophile Cys145 have been debated in previous studies of SARS-CoV M pro , but have yet to be investigated for SARS-CoV-2. In this work we have used molecular dynamics simulations to determine the structural stability of SARS-CoV-2 M pro as a function of the protonation assignments for these residues. We simulated both the apo and inhibitor-bound enzyme and found that the conformational stability of the binding site, bound inhibitors, and the hydrogen bond networks of M pro are highly sensitive to these assignments. Additionally, the two inhibitors studied, the peptidomimetic N3 and an α -ketoamide, display distinct His41/His164 protonation-state-dependent stabilities. While the apo and the N3-bound systems favored N δ (HD) and N ϵ (HE) protonation of His41 and His164, respectively, the α -ketoamide was not stably bound in this state. Our results illustrate the importance of using appropriate histidine protonation states to accurately model the structure and dynamics of SARS-CoV-2 M pro in both the apo and inhibitor-bound states, a necessary prerequisite for drug-design efforts.

7.
Nat Microbiol ; 2: 17104, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28665414

RESUMO

Multidrug-resistant (MDR) bacterial infections are a serious threat to public health. Among the most alarming resistance trends is the rapid rise in the number and diversity of ß-lactamases, enzymes that inactivate ß-lactams, a class of antibiotics that has been a therapeutic mainstay for decades. Although several new ß-lactamase inhibitors have been approved or are in clinical trials, their spectra of activity do not address MDR pathogens such as Acinetobacter baumannii. This report describes the rational design and characterization of expanded-spectrum serine ß-lactamase inhibitors that potently inhibit clinically relevant class A, C and D ß-lactamases and penicillin-binding proteins, resulting in intrinsic antibacterial activity against Enterobacteriaceae and restoration of ß-lactam activity in a broad range of MDR Gram-negative pathogens. One of the most promising combinations is sulbactam-ETX2514, whose potent antibacterial activity, in vivo efficacy against MDR A. baumannii infections and promising preclinical safety demonstrate its potential to address this significant unmet medical need.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Compostos Azabicíclicos/química , Compostos Azabicíclicos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Animais , Compostos Azabicíclicos/uso terapêutico , Compostos Azabicíclicos/toxicidade , Carbapenêmicos/farmacologia , Cães , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana Múltipla , Enterobacteriaceae/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Humanos , Camundongos , Modelos Moleculares , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Ratos , Sulbactam/química , Sulbactam/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Inibidores de beta-Lactamases/toxicidade , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia
8.
J Chem Phys ; 133(10): 105103, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20849192

RESUMO

The native-to-loop (N-L) unfolding transition of Trp-cage protein was studied via optimized forward flux sampling (FFS) methods with trajectories evolved using molecular dynamics. The rate constant calculated from our simulations is in good agreement with the experimental value for the native-to-unfolded transition of this protein; furthermore, the trajectories sampled a phase region consistent with that reported in previous studies for the N-L transition using transition path sampling and transition interface sampling. A new variant of FFS is proposed and implemented that allows a better control of a constant flux of partial paths. A reaction coordinate model was obtained, at no extra cost, from the transition path ensemble generated by FFS, through iterative use of the FFS-least-square estimation method [E. E. Borrero and F. A. Escobedo, J. Chem. Phys. 127, 164101 (2007)] and an adaptive staging optimization algorithm [E. E. Borrero and F. A. Escobedo, J. Chem. Phys. 129, 024115 (2008)]. Finally, we further elucidate the unfolding mechanism by correlating the unfolding progress with changes in the root mean square deviation from the α carbons of the native state, the root mean square deviation from an ideal α-helix, and other structural properties of the protein.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos/química , Cinética , Conformação Proteica , Dobramento de Proteína , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA