Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Genet ; 99(1): 111-118, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783189

RESUMO

The neuronal ceroid lipofuscinoses (NCLs) are at least 13 distinct progressive neurodegenerative disorders unified by the accumulation of lysosomal auto-fluorescent material called lipofuscin. The only form that occurs via autosomal-dominant inheritance exhibits adult onset and is sometimes referred to as Parry type NCL. The manifestations may include behavioral symptoms followed by seizures, ataxia, dementia, and early death. Mutations in the gene DNAJC5 that codes for the presynaptic co-chaperone cysteine string protein-α (CSPα) were recently reported in sporadic adult-onset cases and in families with dominant inheritance. The mutant CSPα protein may lead to disease progression by both loss and gain of function mechanisms. Iron chelation therapy may be considered as a possible pharmaceutical intervention based on our recent mechanism-based proposal of CSPα oligomerization via ectopic Fe-S cluster-binding, summarized in this review.


Assuntos
Proteínas de Choque Térmico HSP40/genética , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/terapia , Neurônios/metabolismo , Genes Dominantes/genética , Humanos , Ferro/metabolismo , Quelantes de Ferro/uso terapêutico , Mutação/genética , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Neurônios/patologia , Linhagem
3.
Nat Struct Mol Biol ; 27(2): 192-201, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32042150

RESUMO

Point mutations in cysteine string protein-α (CSPα) cause dominantly inherited adult-onset neuronal ceroid lipofuscinosis (ANCL), a rapidly progressing and lethal neurodegenerative disease with no treatment. ANCL mutations are proposed to trigger CSPα aggregation/oligomerization, but the mechanism of oligomer formation remains unclear. Here we use purified proteins, mouse primary neurons and patient-derived induced neurons to show that the normally palmitoylated cysteine string region of CSPα loses palmitoylation in ANCL mutants. This allows oligomerization of mutant CSPα via ectopic binding of iron-sulfur (Fe-S) clusters. The resulting oligomerization of mutant CSPα causes its mislocalization and consequent loss of its synaptic SNARE-chaperoning function. We then find that pharmacological iron chelation mitigates the oligomerization of mutant CSPα, accompanied by partial rescue of the downstream SNARE defects and the pathological hallmark of lipofuscin accumulation. Thus, the iron chelators deferiprone (L1) and deferoxamine (Dfx), which are already used to treat iron overload in humans, offer a new approach for treating ANCL.


Assuntos
Proteínas de Choque Térmico HSP40/genética , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/genética , Mutação Puntual , Agregação Patológica de Proteínas/genética , Animais , Células Cultivadas , Feminino , Células HEK293 , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Quelantes de Ferro/metabolismo , Lipoilação , Proteínas de Membrana/metabolismo , Camundongos , Lipofuscinoses Ceroides Neuronais/metabolismo , Neurônios/metabolismo , Agregação Patológica de Proteínas/metabolismo , Ligação Proteica , Multimerização Proteica
4.
Artigo em Inglês | MEDLINE | ID: mdl-31387860

RESUMO

Whole-exome sequencing was used to identify the genetic etiology of a rapidly progressing neurological disease present in two of six siblings with early childhood onset of severe progressive spastic paraparesis and learning disabilities. A homozygous mutation (c.2005G>T, p, V669L) was found in VAC14, and the clinical phenotype is consistent with the recently described VAC14-related striatonigral degeneration, childhood-onset syndrome (SNDC) (MIM#617054). However, the phenotype includes a distinct clinical presentation of retinitis pigmentosa (RP), which has not previously been reported in association with VAC14 mutations. Brain magnetic resonance imaging (MRI) revealed abnormal magnetic susceptibility in the globus pallidus, which can be seen in neurodegeneration with brain iron accumulation (NBIA). RP is a group of inherited retinal diseases with phenotypic/genetic heterogeneity, and the pathophysiologic basis of RP is not completely understood but is thought to be due to a primary retinal photoreceptor cell degenerative process. Most cases of RP are seen in isolation (nonsyndromic); this is a report of RP in two siblings with VAC14-associated syndrome, and it is suggested that a connection between RP and VAC14-associated syndrome should be explored in future studies.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Retinose Pigmentar/genética , Adolescente , Encéfalo/patologia , Exoma/genética , Família , Feminino , Homozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Mutação/genética , Paraparesia Espástica/genética , Linhagem , Fenótipo , Retina/patologia , Retinose Pigmentar/metabolismo , Irmãos , Síndrome , Sequenciamento do Exoma/métodos , Adulto Jovem
5.
Autism Res ; 11(5): 707-712, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29394471

RESUMO

Folate deficiency can affect fetal and neonatal brain development Considering the reported association of Folate receptor alpha (FRα) autoantibodies (Abs) with autism and developmental disorders, we sought to confirm this in families of 82 children with ASD, 53 unaffected siblings, 65 fathers, and 70 mothers, along with 52 unrelated normal controls. Overall, 76% of the affected children, 75% of the unaffected siblings, 69% of fathers and 59% of mothers were positive for either blocking or binding Ab, whereas the prevalence of this Ab in the normal controls was 29%. The Ab was highly prevalent in affected families including unaffected siblings. The appearance of these antibodies may have a familial origin but the risk of developing ASD is likely influenced by other mitigating factors since some siblings who had the antibodies were not affected. The antibody response appears heritable with the blocking autoantibody in the parents and affected child increasing the risk of ASD. Autism Res 2018, 11: 707-712. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Folate is an essential nutrient during fetal and infant development. Autoantibodies against the folate receptor alpha can block folate transport from the mother to the fetus and to the brain in infants. Children diagnosed with autism and their immediate family members were evaluated for the prevalence of folate receptor autoantibodies. The autoantibody was highly prevalent in affected families with similar distribution in parents, normal siblings and affected children. The presence of these antibodies appears to have a familial origin and may contribute to developmental deficits when combined with other factors.


Assuntos
Transtorno do Espectro Autista/imunologia , Autoanticorpos/imunologia , Receptor 1 de Folato/imunologia , Pais , Irmãos , Adulto , Transtorno do Espectro Autista/diagnóstico , Criança , Pré-Escolar , Feminino , Humanos , Masculino
6.
Acta Neuropathol ; 131(4): 621-37, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26659577

RESUMO

Neuronal ceroid lipofuscinoses (NCL) are a group of inherited neurodegenerative disorders with lysosomal pathology (CLN1-14). Recently, mutations in the DNAJC5/CLN4 gene, which encodes the presynaptic co-chaperone CSPα were shown to cause autosomal-dominant NCL. Although 14 NCL genes have been identified, it is unknown if they act in common disease pathways. Here we show that two disease-associated proteins, CSPα and the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1/CLN1) are biochemically linked. We find that in DNAJC5/CLN4 patient brains, PPT1 is massively increased and mis-localized. Surprisingly, the specific enzymatic activity of PPT1 is dramatically reduced. Notably, we demonstrate that CSPα is depalmitoylated by PPT1 and hence its substrate. To determine the consequences of PPT1 accumulation, we compared the palmitomes from control and DNAJC5/CLN4 patient brains by quantitative proteomics. We discovered global changes in protein palmitoylation, mainly involving lysosomal and synaptic proteins. Our findings establish a functional link between two forms of NCL and serve as a springboard for investigations of NCL disease pathways.


Assuntos
Encéfalo/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Membrana/genética , Mutação/genética , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Tioléster Hidrolases/metabolismo , Animais , Encéfalo/patologia , Células Cultivadas , Córtex Cerebral/citologia , Feminino , Proteínas de Choque Térmico HSP40/deficiência , Humanos , Lipoilação/genética , Lipoilação/fisiologia , Masculino , Proteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Mapas de Interação de Proteínas , Proteômica , Frações Subcelulares/metabolismo , Frações Subcelulares/patologia , Transfecção
7.
PLoS One ; 10(4): e0125205, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25905915

RESUMO

Cysteine string protein (CSPα) is a presynaptic J protein co-chaperone that opposes neurodegeneration. Mutations in CSPα (i.e., Leu115 to Arg substitution or deletion (Δ) of Leu116) cause adult neuronal ceroid lipofuscinosis (ANCL), a dominantly inherited neurodegenerative disease. We have previously demonstrated that CSPα limits the expression of large conductance, calcium-activated K+ (BK) channels in neurons, which may impact synaptic excitability and neurotransmission. Here we show by western blot analysis that expression of the pore-forming BKα subunit is elevated ~2.5 fold in the post-mortem cortex of a 36-year-old patient with the Leu116∆ CSPα mutation. Moreover, we find that the increase in BKα subunit level is selective for ANCL and not a general feature of neurodegenerative conditions. While reduced levels of CSPα are found in some postmortem cortex specimens from Alzheimer's disease patients, we find no concomitant increase in BKα subunit expression in Alzheimer's specimens. Both CSPα monomer and oligomer expression are reduced in synaptosomes prepared from ANCL cortex compared with control. In a cultured neuronal cell model, CSPα oligomers are short lived. The results of this study indicate that the Leu116∆ mutation leads to elevated BKα subunit levels in human cortex and extend our initial work in rodent models demonstrating the modulation of BKα subunit levels by the same CSPα mutation. While the precise sequence of pathogenic events still remains to be elucidated, our findings suggest that dysregulation of BK channels may contribute to neurodegeneration in ANCL.


Assuntos
Doença de Alzheimer/metabolismo , Córtex Cerebral/metabolismo , Proteínas de Choque Térmico HSP40/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Adulto , Idoso , Doença de Alzheimer/genética , Animais , Autopsia , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Neurônios/metabolismo , Sinaptossomos/metabolismo
8.
PLoS One ; 7(1): e29729, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22235333

RESUMO

BACKGROUND: The Neuronal Ceroid Lipofuscinoses (NCL) comprise at least nine progressive neurodegenerative genetic disorders. Kufs disease, an adult-onset form of NCL may be recessively or dominantly inherited. Our study aimed to identify genetic mutations associated with autosomal dominant Kufs disease (ADKD). METHODOLOGY AND PRINCIPAL FINDINGS: We have studied the family first reported with this phenotype in the 1970s, the Parry family. The proband had progressive psychiatric manifestations, seizures and cognitive decline starting in her mid 20 s. Similarly affected relatives were observed in seven generations. Several of the affected individuals had post-mortem neuropathological brain study confirmatory for NCL disease. We conducted whole exome sequencing of three affected family members and identified a pLeu116del mutation in the gene DNAJC5, which segregated with the disease phenotype. An additional eight unrelated affected individuals with documented autosomal dominant or sporadic inheritance were studied. All had diagnostic confirmation with neuropathological studies of brain tissue. Among them we identified an additional individual with a p.Leu115Arg mutation in DNAJC5. In addition, a pAsn477Ser change in the neighboring gene PRPF6, a gene previously found to be associated with retinitis pigmentosa, segregated with the ADKD phenotype. Interestingly, two individuals of the Parry family did report visual impairment. CONCLUSIONS: Our study confirmed the recently reported association of DNAJC5 mutations with ADKD in two out of nine well-defined families. Sequence changes in PRPF6 have not been identified in other unrelated cases. The association of vision impairment with the expected PRPF6 dysfunction remains possible but would need further clinical studies in order to confirm the co-segregation of the visual impairment with this sequence change.


Assuntos
Genes Dominantes/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Membrana/genética , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Linhagem , Adolescente , Adulto , Exoma/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência , Adulto Jovem
9.
Pharmacotherapy ; 29(12): 1491, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19947808

RESUMO

Mitochondrial toxicity is a well-recognized adverse effect of nucleoside reverse transcriptase inhibitor therapy for human immunodeficiency virus (HIV) infection. Transient lactic acidosis is often observed in children born after in utero antiretroviral prophylaxis against mother-to-child transmission of HIV. However, the extent and the mechanism of in utero adverse effects are largely unknown. We describe a 4-year-old girl who presented with manifestations of severe mitochondrial disease, specifically, developmental and growth delay, hypotonia, lactic acidosis, congenital cataracts, and pancreatitis. Her HIV-positive mother was receiving lamivudine, zidovudine, and nelfinavir mesylate during her pregnancy. The child tested HIV negative after birth. She was found to have a homoplastic T9098C sequence change in the mitochondrial gene coding for adenosine 5'-triphosphate synthase 6 (MTATP6) that was previously reported as a mitochondrial polymorphism. This polymorphism is in the MTATP6 gene-coding sequence and leads to the replacement of a nonpolar amino acid with a polar amino acid. Because of the typical clinical manifestations of mitochondrial disorder and because of the nature of the mitochondrial sequence change, the observed polymorphism likely predisposed this patient to develop severe antiretroviral-associated mitochondrial disease. Mitochondrial sequence alterations may be important factors in mitochondrial toxicity associated with antiretroviral treatment. Mitochondrial sequencing may be warranted in cases of persistent lactic acidosis after antiretroviral prophylaxis to further study this association.


Assuntos
Fármacos Anti-HIV/efeitos adversos , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Doenças Mitocondriais/induzido quimicamente , ATPases Mitocondriais Próton-Translocadoras/efeitos dos fármacos , Fármacos Anti-HIV/uso terapêutico , Sequência de Bases , Pré-Escolar , DNA Mitocondrial/efeitos dos fármacos , DNA Mitocondrial/genética , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Infecções por HIV/transmissão , Humanos , Doenças Mitocondriais/genética , Doenças Mitocondriais/fisiopatologia , ATPases Mitocondriais Próton-Translocadoras/genética , Gravidez , Índice de Gravidade de Doença
10.
Kidney Int ; 74(11): 1468-79, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18818683

RESUMO

Large DNA rearrangements account for about 8% of disease mutations and are more common in duplicated genomic regions, where they are difficult to detect. Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in either PKD1 or PKD2. PKD1 is located in an intrachromosomally duplicated region. A tuberous sclerosis gene, TSC2, lies immediately adjacent to PKD1 and large deletions can result in the PKD1/TSC2 contiguous gene deletion syndrome. To rapidly identify large rearrangements, a multiplex ligation-dependent probe amplification assay was developed employing base-pair differences between PKD1 and the six pseudogenes to generate PKD1-specific probes. All changes in a set of 25 previously defined deletions in PKD1, PKD2 and PKD1/TSC2 were detected by this assay and we also found 14 new mutations at these loci. About 4% of the ADPKD patients in the CRISP study were found to have gross rearrangements, and these accounted for about a third of base-pair mutation negative families. Sensitivity of the assay showed that about 40% of PKD1/TSC contiguous gene deletion syndrome families contained mosaic cases. Characterization of a family found to be mosaic for a PKD1 deletion is discussed here to illustrate family risk and donor selection considerations. Our assay improves detection levels and the reliability of molecular testing of patients with ADPKD.


Assuntos
Rearranjo Gênico , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Proteínas Supressoras de Tumor/genética , Análise Mutacional de DNA/métodos , Análise Mutacional de DNA/normas , Saúde da Família , Feminino , Deleção de Genes , Humanos , Masculino , Mutação , Linhagem , Rim Policístico Autossômico Dominante/diagnóstico , Proteína 2 do Complexo Esclerose Tuberosa
11.
Am J Med Genet A ; 146A(12): 1543-6, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18478592

RESUMO

Reduced telomere length has recently been reported in T lymphocytes of individuals with trisomy 21 Down syndrome (DS) and dementia. Shorter telomeres also have been documented in dyskeratosis congenita, cell senescence, Alzheimer disease, and neoplastic transformation. These observations suggest that similar shortening may occur in people with fragile X-associated tremor/ataxia syndrome (FXTAS), which frequently is accompanied by dementia. To test this hypothesis, telomere length has been quantified in T lymphocytes from older male carriers of premutation FMR1 alleles, with or without FXTAS, and FXTAS with dementia. Shorter telomeres (relative to age-matched controls) were observed in 5/5 individuals with FXTAS and dementia, in 2/2 individuals with FXTAS without dementia, and in 3/3 individuals with the fragile X premutation only (P values ranged from <0.001 to <0.05; Student's t-test), indicating that telomere shortening is associated with the premutation expansion of the FMR1 gene. The current study design allowed simultaneous comparisons among control, premutation, FXTAS, and FXTAS with dementia samples, and showed nearly equal degrees of shortening relative to controls among the three premutation sample groups. Thus, telomere shortening may serve as a biomarker for cellular dysregulation that may precede the development of the symptoms of FXTAS.


Assuntos
Ataxia/diagnóstico , Demência/diagnóstico , Proteína do X Frágil da Deficiência Intelectual/genética , Telômero/genética , Telômero/ultraestrutura , Tremor/diagnóstico , Idoso , Alelos , Ataxia/genética , Demência/genética , Marcadores Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Síndrome , Linfócitos T/ultraestrutura , Tremor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA