Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; : e14246, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895933

RESUMO

The transcription factor HSF-1 (heat shock factor 1) acts as a master regulator of heat shock response in eukaryotic cells to maintain cellular proteostasis. The protein has a protective role in preventing cells from undergoing ageing, and neurodegeneration, and also mediates tumorigenesis. Thus, modulating HSF-1 activity in humans has a promising therapeutic potential for treating these pathologies. Loss of HSF-1 function is usually associated with impaired stress tolerance. Contrary to this conventional knowledge, we show here that inactivation of HSF-1 in the nematode Caenorhabditis elegans results in increased thermotolerance at young adult stages, whereas HSF-1 deficiency in animals passing early adult stages indeed leads to decreased thermotolerance, as compared to wild-type. Furthermore, a gene expression analysis supports that in young adults, distinct cellular stress response and immunity-related signaling pathways become induced upon HSF-1 deficiency. We also demonstrate that increased tolerance to proteotoxic stress in HSF-1-depleted young worms requires the activity of the unfolded protein response of the endoplasmic reticulum and the SKN-1/Nrf2-mediated oxidative stress response pathway, as well as an innate immunity-related pathway, suggesting a mutual compensatory interaction between HSF-1 and these conserved stress response systems. A similar compensatory molecular network is likely to also operate in higher animal taxa, raising the possibility of an unexpected outcome when HSF-1 activity is manipulated in humans.

2.
Autophagy ; 20(1): 188-201, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589496

RESUMO

Macroautophagy/autophagy is a highly-conserved catabolic procss eliminating dysfunctional cellular components and invading pathogens. Autophagy malfunction contributes to disorders such as cancer, neurodegenerative and inflammatory diseases. Understanding autophagy regulation in health and disease has been the focus of the last decades. We previously provided an integrated database for autophagy research, the Autophagy Regulatory Network (ARN). For the last eight years, this resource has been used by thousands of users. Here, we present a new and upgraded resource, AutophagyNet. It builds on the previous database but contains major improvements to address user feedback and novel needs due to the advancement in omics data availability. AutophagyNet contains updated interaction curation and integration of over 280,000 experimentally verified interactions between core autophagy proteins and their protein, transcriptional and post-transcriptional regulators as well as their potential upstream pathway connections. AutophagyNet provides annotations for each core protein about their role: 1) in different types of autophagy (mitophagy, xenophagy, etc.); 2) in distinct stages of autophagy (initiation, expansion, termination, etc.); 3) with subcellular and tissue-specific localization. These annotations can be used to filter the dataset, providing customizable download options tailored to the user's needs. The resource is available in various file formats (e.g. CSV, BioPAX and PSI-MI), and data can be analyzed and visualized directly in Cytoscape. The multi-layered regulation of autophagy can be analyzed by combining AutophagyNet with tissue- or cell type-specific (multi-)omics datasets (e.g. transcriptomic or proteomic data). The resource is publicly accessible at http://autophagynet.org.Abbreviations: ARN: Autophagy Regulatory Network; ATG: autophagy related; BCR: B cell receptor pathway; BECN1: beclin 1; GABARAP: GABA type A receptor-associated protein; IIP: innate immune pathway; LIR: LC3-interacting region; lncRNA: long non-coding RNA; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; miRNA: microRNA; NHR: nuclear hormone receptor; PTM: post-translational modification; RTK: receptor tyrosine kinase; TCR: T cell receptor; TLR: toll like receptor.


Assuntos
Autofagia , MicroRNAs , Autofagia/fisiologia , Proteômica , Proteína Beclina-1 , Mitofagia , Transdução de Sinais/genética
3.
Int J Mol Sci ; 24(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175806

RESUMO

Autophagy (cellular self-degradation) plays a major role in maintaining the functional integrity (homeostasis) of essentially all eukaryotic cells. During the process, superfluous and damaged cellular constituents are delivered into the lysosomal compartment for enzymatic degradation. In humans, age-related defects in autophagy have been linked to the incidence of various age-associated degenerative pathologies (e.g., cancer, neurodegenerative diseases, diabetes, tissue atrophy and fibrosis, and immune deficiency) and accelerated ageing. Muscle mass decreases at detectable levels already in middle-aged patients, and this change can increase up to 30-50% at age 80. AUTEN-67 and -99, two small-molecule enhancers of autophagy with cytoprotective and anti-ageing effects have been previously identified and initially characterized. These compounds can increase the life span in wild-type and neurodegenerative model strains of the fruit fly Drosophila melanogaster. Adult flies were treated with these AUTEN molecules via feeding. Fluorescence and electron microscopy and Western blotting were used to assess the level of autophagy and cellular senescence. Flying tests were used to measure the locomotor ability of the treated animals at different ages. In the current study, the effects of AUTEN-67 and -99 were observed on striated muscle cells using the Drosophila indirect flight muscle (IFM) as a model. The two molecules were capable of inducing autophagy in IFM cells, thereby lowering the accumulation of protein aggregates and damaged mitochondria, both characterizing muscle ageing. Furthermore, the two molecules significantly improved the flying ability of treated animals. AUTEN-67 and -99 decrease the rate at which striated muscle cells age. These results may have a significant medical relevance that could be further examined in mammalian models.


Assuntos
Drosophila , Músculo Estriado , Animais , Humanos , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Drosophila melanogaster , Envelhecimento , Autofagia , Mamíferos
4.
Biol Futur ; 73(4): 375-384, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35731422

RESUMO

Autophagy is a highly conserved self-degradation process of eukaryotic cells which is required for the effective elimination of damaged and unnecessary cytosolic constituents. Defects in the process can cause the intracellular accumulation of such damages, thereby leading to the senescence and subsequent loss of the affected cell. Defective autophagy hence is implicated in the development of various degenerative processes, including cancer, neurodegenerative diseases, diabetes, tissue atrophy and fibrosis, and immune deficiency, as well as in accelerated aging. The autophagic process is mediated by numerous autophagy-related (ATG) proteins, among which the ATG8/LC3/GABARAP (Microtubule-associated protein 1A/1B-light chain 3/Gammaaminobutyric acid receptor-associated protein) superfamily has a pivotal role in the formation and maturation of autophagosome, a key (macro) autophagic structure (the autophagosome sequesters parts of the cytoplasm which are destined for breakdown). While in the unicellular yeast there is only a single ATG8 protein, metazoan systems usually contain more ATG8 paralogs. ATG8 paralogs generally display tissue-specific expression patterns and their functions are not strictly restricted to autophagy. For example, GABARAP proteins also play a role in intracellular vesicle transport, and, in addition to autophagosome formation, ATG8 also functions in selective autophagy. In this review, we summarize the functional diversity of ATG8/LC3/GABARAP proteins, using tractable genetic models applied in autophagy research.


Assuntos
Família da Proteína 8 Relacionada à Autofagia , Autofagia , Evolução Molecular , Animais , Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/classificação , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Transporte Biológico , Vesículas Transportadoras/metabolismo , Filogenia
5.
6.
Autophagy ; 17(12): 4010-4028, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33779490

RESUMO

Myotubularin (MTM) and myotubularin-related (MTMR) lipid phosphatases catalyze the removal of a phosphate group from certain phosphatidylinositol derivatives. Because some of these substrates are required for macroautophagy/autophagy, during which unwanted cytoplasmic constituents are delivered into lysosomes for degradation, MTM and MTMRs function as important regulators of the autophagic process. Despite its physiological and medical significance, the specific role of individual MTMR paralogs in autophagy control remains largely unexplored. Here we examined two Drosophila MTMRs, EDTP and Mtmr6, the fly orthologs of mammalian MTMR14 and MTMR6 to MTMR8, respectively, and found that these enzymes affect the autophagic process in a complex, condition-dependent way. EDTP inhibited basal autophagy, but did not influence stress-induced autophagy. In contrast, Mtmr6 promoted the process under nutrient-rich settings, but effectively blocked its hyperactivation in response to stress. Thus, Mtmr6 is the first identified MTMR phosphatase with dual, antagonistic roles in the regulation of autophagy, and shows conditional antagonism/synergism with EDTP in modulating autophagic breakdown. These results provide a deeper insight into the adjustment of autophagy.Abbreviations: Atg, autophagy-related; BDSC, Bloomington Drosophila Stock Center; DGRC, Drosophila Genetic Resource Center; EDTP, Egg-derived tyrosine phosphatase; FYVE, zinc finger domain from Fab1 (yeast ortholog of PIKfyve), YOTB, Vac1 (vesicle transport protein) and EEA1 cysteine-rich proteins; LTR, LysoTracker Red; MTM, myotubularin; MTMR, myotubularin-related; PI, phosphatidylinositol; Pi3K59F, Phosphotidylinositol 3 kinase 59F; PtdIns3P, phosphatidylinositol-3-phosphate; PtdIns(3,5)P2, phosphatidylinositol-3,5-bisphosphate; PtdIns5P, phosphatidylinositol-5-phosphate; ref(2)P, refractory to sigma P; Syx17, Syntaxin 17; TEM, transmission electron microscopy; UAS, upstream activating sequence; Uvrag, UV-resistance associated gene; VDRC, Vienna Drosophila RNAi Center; Vps34, Vacuolar protein sorting 34.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Autofagia/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Lisossomos/metabolismo , Mamíferos/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo
7.
Int J Mol Sci ; 20(22)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752429

RESUMO

HSF1 (heat shock factor 1) is an evolutionarily conserved master transcriptional regulator of the heat shock response (HSR) in eukaryotic cells. In response to high temperatures, HSF1 upregulates genes encoding molecular chaperones, also called heat shock proteins, which assist the refolding or degradation of damaged intracellular proteins. Accumulating evidence reveals however that HSF1 participates in several other physiological and pathological processes such as differentiation, immune response, and multidrug resistance, as well as in ageing, neurodegenerative demise, and cancer. To address how HSF1 controls these processes one should systematically analyze its target genes. Here we present a novel database called HSF1Base (hsf1base.org) that contains a nearly comprehensive list of HSF1 target genes identified so far. The list was obtained by manually curating publications on individual HSF1 targets and analyzing relevant high throughput transcriptomic and chromatin immunoprecipitation data derived from the literature and the Yeastract database. To support the biological relevance of HSF1 targets identified by high throughput methods, we performed an enrichment analysis of (potential) HSF1 targets across different tissues/cell types and organisms. We found that general HSF1 functions (targets are expressed in all tissues/cell types) are mostly related to cellular proteostasis. Furthermore, HSF1 targets that are conserved across various animal taxa operate mostly in cellular stress pathways (e.g., autophagy), chromatin remodeling, ribosome biogenesis, and ageing. Together, these data highlight diverse roles for HSF1, expanding far beyond the HSR.


Assuntos
Proteínas de Choque Térmico/genética , Animais , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Imunoprecipitação da Cromatina/métodos , Humanos , Camundongos , Chaperonas Moleculares/genética , Proteostase/genética , Fatores de Transcrição/genética
8.
Cell Mol Life Sci ; 76(20): 4131-4144, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31053883

RESUMO

ABCB6 belongs to the family of ATP-binding cassette (ABC) transporters, which transport various molecules across extra- and intra-cellular membranes, bearing significant impact on human disease and pharmacology. Although mutations in the ABCB6 gene have been linked to a variety of pathophysiological conditions ranging from transfusion incompatibility to pigmentation defects, its precise cellular localization and function is not understood. In particular, the intracellular localization of ABCB6 has been a matter of debate, with conflicting reports suggesting mitochondrial or endolysosomal expression. ABCB6 shows significant sequence identity to HMT-1 (heavy metal tolerance factor 1) proteins, whose evolutionarily conserved role is to confer tolerance to heavy metals through the intracellular sequestration of metal complexes. Here, we show that the cadmium-sensitive phenotype of Schizosaccharomyces pombe and Caenorhabditis elegans strains defective for HMT-1 is rescued by the human ABCB6 protein. Overexpression of ABCB6 conferred tolerance to cadmium and As(III) (As2O3), but not to As(V) (Na2HAsO4), Sb(V), Hg(II), or Zn(II). Inactivating mutations of ABCB6 abolished vacuolar sequestration of cadmium, effectively suppressing the cadmium tolerance phenotype. Modulation of ABCB6 expression levels in human glioblastoma cells resulted in a concomitant change in cadmium sensitivity. Our findings reveal ABCB6 as a functional homologue of the HMT-1 proteins, linking endolysosomal ABCB6 to the highly conserved mechanism of intracellular cadmium detoxification.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Cádmio/toxicidade , Proteínas de Caenorhabditis elegans/genética , Inativação Metabólica/genética , Poluentes Químicos da Água/toxicidade , Transportadores de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antimônio/toxicidade , Arseniatos/toxicidade , Trióxido de Arsênio/toxicidade , Cádmio/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Sequência Conservada , Expressão Gênica , Teste de Complementação Genética , Células HeLa , Humanos , Mercúrio/toxicidade , Mutação , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Poluentes Químicos da Água/metabolismo , Zinco/toxicidade
9.
FASEB J ; 33(2): 2372-2387, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30277819

RESUMO

NF-E2-related factor 2 (NRF2) transcription factor has a fundamental role in cell homeostasis maintenance as one of the master regulators of oxidative and electrophilic stress responses. Previous studies have shown that a regulatory connection exists between NRF2 and autophagy during reactive oxygen species-generated oxidative stress. The aim of the present study was to investigate how autophagy is turned off during prolonged oxidative stress, to avoid overeating and destruction of essential cellular components. AMPK is a key cellular energy sensor highly conserved in eukaryotic organisms, and it has an essential role in autophagy activation at various stress events. Here the role of human AMPK and its Caenorhabditis elegans counterpart AAK-2 was explored upon oxidative stress. We investigated the regulatory connection between NRF2 and AMPK during oxidative stress induced by tert-butyl hydroperoxide (TBHP) in HEK293T cells and C. elegans. Putative conserved NRF2/protein skinhead-1 binding sites were found in AMPK/aak-2 genes by in silico analysis and were later confirmed experimentally by using EMSA. After addition of TBHP, NRF2 and AMPK showed a quick activation; AMPK was later down-regulated, however, while NRF2 level remained high. Autophagosome formation and Unc-51-like autophagy activating kinase 1 phosphorylation were initially stimulated, but they returned to basal values after 4 h of TBHP treatment. The silencing of NRF2 resulted in a constant activation of AMPK leading to hyperactivation of autophagy during oxidative stress. We observed the same effects in C. elegans demonstrating the conservation of this self-defense mechanism to save cells from hyperactivated autophagy upon prolonged oxidative stress. We conclude that NRF2 negatively regulates autophagy through delayed down-regulation of the expression of AMPK upon prolonged oxidative stress. This regulatory connection between NRF2 and AMPK may have an important role in understanding how autophagy is regulated in chronic human morbidities characterized by oxidative stress, such as neurodegenerative diseases, certain cancer types, and in metabolic diseases.-Kosztelnik, M., Kurucz, A., Papp, D., Jones, E., Sigmond, T., Barna, J., Traka, M. H., Lorincz, T., Szarka, A., Banhegyi, G., Vellai, T., Korcsmaros, T., Kapuy, O. Suppression of AMPK/aak-2 by NRF2/SKN-1 down-regulates autophagy during prolonged oxidative stress.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Células HEK293 , Humanos , Fator 2 Relacionado a NF-E2/genética , Oxirredução , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética
10.
Cell Mol Life Sci ; 75(16): 2897-2916, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29774376

RESUMO

Various stress factors leading to protein damage induce the activation of an evolutionarily conserved cell protective mechanism, the heat shock response (HSR), to maintain protein homeostasis in virtually all eukaryotic cells. Heat shock factor 1 (HSF1) plays a central role in the HSR. HSF1 was initially known as a transcription factor that upregulates genes encoding heat shock proteins (HSPs), also called molecular chaperones, which assist in refolding or degrading injured intracellular proteins. However, recent accumulating evidence indicates multiple additional functions for HSF1 beyond the activation of HSPs. Here, we present a nearly comprehensive list of non-HSP-related target genes of HSF1 identified so far. Through controlling these targets, HSF1 acts in diverse stress-induced cellular processes and molecular mechanisms, including the endoplasmic reticulum unfolded protein response and ubiquitin-proteasome system, multidrug resistance, autophagy, apoptosis, immune response, cell growth arrest, differentiation underlying developmental diapause, chromatin remodelling, cancer development, and ageing. Hence, HSF1 emerges as a major orchestrator of cellular stress response pathways.


Assuntos
Fenômenos Fisiológicos Celulares/genética , Regulação da Expressão Gênica , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Animais , Apoptose/genética , Autofagia/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos
11.
Aging Cell ; 17(3): e12724, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29493066

RESUMO

A fascinating aspect of sexual dimorphism in various animal species is that the two sexes differ substantially in lifespan. In humans, for example, women's life expectancy exceeds that of men by 3-7 years. Whether this trait can be attributed to dissimilar lifestyles or genetic (regulatory) factors remains to be elucidated. Herein, we demonstrate that in the nematode Caenorhabditis elegans, the significantly longer lifespan of hermaphrodites-which are essentially females capable of sperm production-over males is established by TRA-1, the terminal effector of the sex-determination pathway. This transcription factor directly controls the expression of daf-16/FOXO, which functions as a major target of insulin/IGF-1 signaling (IIS) and key modulator of aging across diverse animal phyla. TRA-1 extends hermaphrodite lifespan through promoting daf-16 activity. Furthermore, TRA-1 also influences reproductive growth in a DAF-16-dependent manner. Thus, the sex-determination machinery is an important regulator of IIS in this organism. These findings provide a mechanistic insight into how longevity and development are specified unequally in the two genders. As TRA-1 is orthologous to mammalian GLI (glioma-associated) proteins, a similar sex-specific mechanism may also operate in humans to determine lifespan.


Assuntos
Caenorhabditis elegans/genética , Processos de Determinação Sexual/genética , Envelhecimento , Animais , Feminino , Masculino , Fatores Sexuais
12.
NPJ Syst Biol Appl ; 3: 2, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28603644

RESUMO

Even targeted chemotherapies against solid cancers show a moderate success increasing the need to novel targeting strategies. To address this problem, we designed a systems-level approach investigating the neighbourhood of mutated or differentially expressed cancer-related proteins in four major solid cancers (colon, breast, liver and lung). Using signalling and protein-protein interaction network resources integrated with mutational and expression datasets, we analysed the properties of the direct and indirect interactors (first and second neighbours) of cancer-related proteins, not found previously related to the given cancer type. We found that first neighbours have at least as high degree, betweenness centrality and clustering coefficient as cancer-related proteins themselves, indicating a previously unknown central network position. We identified a complementary strategy for mutated and differentially expressed proteins, where the affect of differentially expressed proteins having smaller network centrality is compensated with high centrality first neighbours. These first neighbours can be considered as key, so far hidden, components in cancer rewiring, with similar importance as mutated proteins. These observations strikingly suggest targeting first neighbours as a novel strategy for disrupting cancer-specific networks. Remarkably, our survey revealed 223 marketed drugs already targeting first neighbour proteins but applied mostly outside oncology, providing a potential list for drug repurposing against solid cancers. For the very central first neighbours, whose direct targeting would cause several side effects, we suggest a cancer-mimicking strategy by targeting their interactors (second neighbours of cancer-related proteins, having a central protein affecting position, similarly to the cancer-related proteins). Hence, we propose to include first neighbours to network medicine based approaches for (but not limited to) anticancer therapies.

13.
Aging Cell ; 16(5): 906-911, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28653810

RESUMO

Despite its medical, social, and economic significance, understanding what primarily causes aging, that is, the mechanisms of the aging process, remains a fundamental and fascinating problem in biology. Accumulating evidence indicates that a small RNA-based gene regulatory machinery, the Piwi-piRNA pathway, represents a shared feature of nonaging (potentially immortal) biological systems, including the germline, somatic cancer stem cells, and certain 'lower' eukaryotic organisms like the planarian flatworm and freshwater hydra. The pathway primarily functions to repress the activity of mobile genetic elements, also called transposable elements (TEs) or 'jumping genes', which are capable of moving from one genomic locus to another, thereby causing insertional mutations. TEs become increasingly active and multiply in the genomes of somatic cells as the organism ages. These characteristics of TEs highlight their decisive mutagenic role in the progressive disintegration of genetic information, a molecular hallmark associated with aging. Hence, TE-mediated genomic instability may substantially contribute to the aging process.


Assuntos
Envelhecimento/genética , Elementos de DNA Transponíveis , Genoma , Instabilidade Genômica , RNA Interferente Pequeno/genética , Envelhecimento/metabolismo , Animais , Sistemas CRISPR-Cas , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Humanos , Hydra/genética , Hydra/metabolismo , Mortalidade , Taxa de Mutação , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
14.
Arch Pharm (Weinheim) ; 350(7)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28547897

RESUMO

A series of novel curcuminoids were synthesised for the first time via a Mannich-3CR/organocatalysed Claisen-Schmidt condensation sequence. Structure-activity relationship (SAR) studies were performed by applying viability assays and holographic microscopic imaging to these curcumin analogues for anti-proliferative activity against A549 and H1975 lung adenocarcinoma cells. The TNFα-induced NF-κB inhibition and autophagy induction effects correlated strongly with the cytotoxic potential of the analogues. Significant inhibition of tumour growth was observed when the most potent analogue 44 was added in liposomes at one-sixth of the maximally tolerated dose in the A549 xenograft model. The novel spectrum of activity of these Mannich curcuminoids warrants further preclinical investigations.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Bases de Mannich/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/análogos & derivados , Curcumina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Bases de Mannich/química , Camundongos , Camundongos SCID , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Relação Estrutura-Atividade
15.
Sci Rep ; 7: 42014, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28205624

RESUMO

Autophagy functions as a main route for the degradation of superfluous and damaged constituents of the cytoplasm. Defects in autophagy are implicated in the development of various age-dependent degenerative disorders such as cancer, neurodegeneration and tissue atrophy, and in accelerated aging. To promote basal levels of the process in pathological settings, we previously screened a small molecule library for novel autophagy-enhancing factors that inhibit the myotubularin-related phosphatase MTMR14/Jumpy, a negative regulator of autophagic membrane formation. Here we identify AUTEN-99 (autophagy enhancer-99), which activates autophagy in cell cultures and animal models. AUTEN-99 appears to effectively penetrate through the blood-brain barrier, and impedes the progression of neurodegenerative symptoms in Drosophila models of Parkinson's and Huntington's diseases. Furthermore, the molecule increases the survival of isolated neurons under normal and oxidative stress-induced conditions. Thus, AUTEN-99 serves as a potent neuroprotective drug candidate for preventing and treating diverse neurodegenerative pathologies, and may promote healthy aging.


Assuntos
Doenças Neurodegenerativas/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Animais , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Drosophila , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacologia
16.
Sci Rep ; 6: 38588, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27922122

RESUMO

Extensive cross-talk between signaling pathways is required to integrate the myriad of extracellular signal combinations at the cellular level. Gene duplication events may lead to the emergence of novel functions, leaving groups of similar genes - termed paralogs - in the genome. To distinguish critical paralog groups (CPGs) from other paralogs in human signaling networks, we developed a signaling network-based method using cross-talk annotation and tissue-specific signaling flow analysis. 75 CPGs were found with higher degree, betweenness centrality, closeness, and 'bowtieness' when compared to other paralogs or other proteins in the signaling network. CPGs had higher diversity in all these measures, with more varied biological functions and more specific post-transcriptional regulation than non-critical paralog groups (non-CPG). Using TGF-beta, Notch and MAPK pathways as examples, SMAD2/3, NOTCH1/2/3 and MEK3/6-p38 CPGs were found to regulate the signaling flow of their respective pathways. Additionally, CPGs showed a higher mutation rate in both inherited diseases and cancer, and were enriched in drug targets. In conclusion, the results revealed two distinct types of paralog groups in the signaling network: CPGs and non-CPGs. Thus highlighting the importance of CPGs as compared to non-CPGs in drug discovery and disease pathogenesis.


Assuntos
Biologia Computacional , Transdução de Sinais , Biologia Computacional/métodos , Bases de Dados Genéticas , Humanos , Especificidade de Órgãos , Transdução de Sinais/efeitos dos fármacos , Fluxo de Trabalho
17.
J Huntingtons Dis ; 5(2): 133-47, 2016 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-27163946

RESUMO

BACKGROUND: Autophagy, a lysosome-mediated self-degradation process of eukaryotic cells, serves as a main route for the elimination of cellular damage [1-3]. Such damages include aggregated, oxidized or misfolded proteins whose accumulation can cause various neurodegenerative pathologies, including Huntington's disease (HD). OBJECTIVE: Here we examined whether enhanced autophagic activity can alleviate neurophatological features in a Drosophila model of HD (the transgenic animals express a human mutant Huntingtin protein with a long polyglutamine repeat, 128Q). METHODS: We have recently identified an autophagy-enhancing small molecule, AUTEN-67 (autophagy enhancer 67), with potent neuroprotective effects [4]. AUTEN-67 was applied to induce autophagic activity in the HD model used in this study. RESULTS: We showed that AUTEN-67 treatment interferes with the progressive accumulation of ubiquitinated proteins in the brain of Drosophila transgenic for the pathological 128Q form of human Huntingtin protein. The compound significantly improved the climbing ability and moderately extended the mean life span of these flies. Furthermore, brain tissue samples from human patients diagnosed for HD displayed increased levels of the autophagy substrate SQSTM1/p62 protein, as compared with controls. CONCLUSIONS: These results imply that AUTEN-67 impedes the progression of neurodegenerative symptoms characterizing HD, and that autophagy is a promising therapeutic target for treating this pathology. In humans, AUTEN-67 may have the potential to delay the onset and decrease the severity of HD.


Assuntos
Autofagia/efeitos dos fármacos , Doença de Huntington/complicações , Naftoquinonas/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/etiologia , Fármacos Neuroprotetores/uso terapêutico , Sulfonamidas/uso terapêutico , Animais , Animais Geneticamente Modificados , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Drosophila , Proteínas de Drosophila/genética , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/patologia , Naftoquinonas/metabolismo , Doenças Neurodegenerativas/genética , Peptídeos/genética , Estatísticas não Paramétricas , Sulfonamidas/metabolismo
18.
Autophagy ; 12(2): 273-86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26312549

RESUMO

Autophagy is a major molecular mechanism that eliminates cellular damage in eukaryotic organisms. Basal levels of autophagy are required for maintaining cellular homeostasis and functioning. Defects in the autophagic process are implicated in the development of various age-dependent pathologies including cancer and neurodegenerative diseases, as well as in accelerated aging. Genetic activation of autophagy has been shown to retard the accumulation of damaged cytoplasmic constituents, delay the incidence of age-dependent diseases, and extend life span in genetic models. This implies that autophagy serves as a therapeutic target in treating such pathologies. Although several autophagy-inducing chemical agents have been identified, the majority of them operate upstream of the core autophagic process, thereby exerting undesired side effects. Here, we screened a small-molecule library for specific inhibitors of MTMR14, a myotubularin-related phosphatase antagonizing the formation of autophagic membrane structures, and isolated AUTEN-67 (autophagy enhancer-67) that significantly increases autophagic flux in cell lines and in vivo models. AUTEN-67 promotes longevity and protects neurons from undergoing stress-induced cell death. It also restores nesting behavior in a murine model of Alzheimer disease, without apparent side effects. Thus, AUTEN-67 is a potent drug candidate for treating autophagy-related diseases.


Assuntos
Envelhecimento/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Naftoquinonas/farmacologia , Fármacos Neuroprotetores/farmacologia , Sulfonamidas/farmacologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Corpo Adiposo/efeitos dos fármacos , Corpo Adiposo/metabolismo , Feminino , Células HeLa , Humanos , Longevidade/efeitos dos fármacos , Masculino , Camundongos , Naftoquinonas/química , Comportamento de Nidação/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/química , Estresse Oxidativo/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/metabolismo , Sulfonamidas/química , Peixe-Zebra
19.
Cell Mol Life Sci ; 72(10): 1839-47, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25837999

RESUMO

Understanding the molecular basis of ageing remains a fundamental problem in biology. In multicellular organisms, while the soma undergoes a progressive deterioration over the lifespan, the germ line is essentially immortal as it interconnects the subsequent generations. Genomic instability in somatic cells increases with age, and accumulating evidence indicates that the disintegration of somatic genomes is accompanied by the mobilisation of transposable elements (TEs) that, when mobilised, can be mutagenic by disrupting coding or regulatory sequences. In contrast, TEs are effectively silenced in the germ line by the Piwi-piRNA system. Here, we propose that TE repression transmits the persistent proliferation capacity and the non-ageing phenotype (e.g., preservation of genomic integrity) of the germ line. The Piwi-piRNA pathway also operates in tumorous cells and in somatic cells of certain organisms, including hydras, which likewise exhibit immortality. However, in somatic cells lacking the Piwi-piRNA pathway, gradual chromatin decondensation increasingly allows the mobilisation of TEs as the organism ages. This can explain why the mortality rate rises exponentially throughout the adult life in most animal species, including humans.


Assuntos
Envelhecimento/fisiologia , Elementos de DNA Transponíveis/fisiologia , Epigênese Genética/fisiologia , Regulação da Expressão Gênica/fisiologia , Instabilidade Genômica/fisiologia , Células Germinativas/metabolismo , Transdução de Sinais/fisiologia , Proteínas Argonautas/metabolismo , Cromatina/fisiologia , Humanos , Modelos Biológicos , RNA Interferente Pequeno/metabolismo
20.
Autophagy ; 11(1): 155-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25635527

RESUMO

Autophagy is a complex cellular process having multiple roles, depending on tissue, physiological, or pathological conditions. Major post-translational regulators of autophagy are well known, however, they have not yet been collected comprehensively. The precise and context-dependent regulation of autophagy necessitates additional regulators, including transcriptional and post-transcriptional components that are listed in various datasets. Prompted by the lack of systems-level autophagy-related information, we manually collected the literature and integrated external resources to gain a high coverage autophagy database. We developed an online resource, Autophagy Regulatory Network (ARN; http://autophagy-regulation.org), to provide an integrated and systems-level database for autophagy research. ARN contains manually curated, imported, and predicted interactions of autophagy components (1,485 proteins with 4,013 interactions) in humans. We listed 413 transcription factors and 386 miRNAs that could regulate autophagy components or their protein regulators. We also connected the above-mentioned autophagy components and regulators with signaling pathways from the SignaLink 2 resource. The user-friendly website of ARN allows researchers without computational background to search, browse, and download the database. The database can be downloaded in SQL, CSV, BioPAX, SBML, PSI-MI, and in a Cytoscape CYS file formats. ARN has the potential to facilitate the experimental validation of novel autophagy components and regulators. In addition, ARN helps the investigation of transcription factors, miRNAs and signaling pathways implicated in the control of the autophagic pathway. The list of such known and predicted regulators could be important in pharmacological attempts against cancer and neurodegenerative diseases.


Assuntos
Autofagia/genética , Biologia Computacional/métodos , Redes Reguladoras de Genes , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Bases de Dados Genéticas , Humanos , Internet , Proteínas de Membrana/metabolismo , Ligação Proteica , Transdução de Sinais/genética , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA