Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 47(8): 1163-1182, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38491194

RESUMO

Alternanthera sessilis (AS) leaf extract was used to synthesize zinc oxide nanoparticles (ZnO NPs). Bioanalytical characterization techniques such as X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) confirmed the formation of crystalline ZnO NPs with average sizes of 40 nm. The AS-ZnO NPs antimicrobial activity was analyzed under dark (D) and white light (WL) conditions. The improved antimicrobial activity was observed against Escherichia coli, Staphylococcus aureus and Bacillus subtilis at the minimal inhibitory concentration (MIC) of 125 and 62.5 µg/mL under WL than the D at 125 and 250 µg/mL for E. coli, B. subtilis, and Pseudomonas aeruginosa, respectively. In contrast, the growth of P. aeruginosa and S. aureus was not completely inhibited until 1 mg/mL AS-ZnO NPs under WL and D. Similarly, AS-ZnO NPs displayed a weaker inhibitory effect against carbapenem-sensitive P. aeruginosa (CSPA) and carbapenem-resistant P. aeruginosa (CRPA) strains of PAC023, PAC041 and PAC032, PAC045 under D. Interestingly, the distinct inhibitory effect was recorded against CSPA PAC041 and CRPA PAC032 in which the bacteria growth was inhibited 99.9% at 250, 500 µg/mL under WL. The cytotoxicity results suggested AS-ZnO NPs demonstrated higher toxicity to MCF-7 breast cancer cells than the RAW264.7 macrophage cells. Further, AS-ZnO NPs exhibited higher catalytic potential against tetracycline hydrochloride (TC-H) degradation at 65.6% and 60.8% under WL than the dark at 59.35% and 48.6% within 120 min. Therefore, AS-ZnO NPs can be used to design a photo-improved antimicrobial formulation and environmental catalyst for removing TC-H from wastewater.


Assuntos
Antineoplásicos , Pseudomonas aeruginosa , Tetraciclina , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Tetraciclina/farmacologia , Tetraciclina/química , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanopartículas Metálicas/química , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Farmacorresistência Bacteriana , Células RAW 264.7 , Nanopartículas/química
2.
Gene ; 896: 148057, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38043836

RESUMO

Colorectal cancer (CRC) is ranked as the second leading cause of mortality worldwide, mainly due to metastasis. Epithelial to mesenchymal transition (EMT) is a complex cellular process that drives CRC metastasis, regulated by changes in EMT-associated gene expression. However, while numerous genes have been identified as EMT regulators through various in vivo and in vitro studies, little is known about the genes that are differentially expressed in CRC tumour tissue and their signalling pathway in regulating EMT. Using an integration of systematic search and bioinformatic analysis, gene expression profiles of CRC tumour tissues were compared to non-tumour adjacent tissues to identify differentially expressed genes (DEGs), followed by performing systematic review on common identified DEGs. Fifty-eight common DEGs were identified from the analysis of 82 tumour tissue samples obtained from four gene expression datasets (NCBI GEO). These DEGS were then systematically searched for their roles in modulating EMT in CRC based on previously published studies. Following this, 10 common DEGs (CXCL1, CXCL8, MMP1, MMP3, MMP7, TACSTD2, VIP, HPGD, ABCG2, CLCA4) were included in this study and subsequently subjected to further bioinformatic analysis. Their roles and functions in modulating EMT in CRC were discussed in this review. This study enhances our understanding of the molecular mechanisms underlying EMT and uncovers potential candidate genes and pathways that could be targeted in CRC.


Assuntos
Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Humanos , Transição Epitelial-Mesenquimal/genética , Neoplasias Colorretais/patologia , Transdução de Sinais/genética , Expressão Gênica , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
3.
Toxicol Appl Pharmacol ; 481: 116767, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38007073

RESUMO

Current treatments for stomach cancer are often effective in curing cancer. However, these treatments can also have significant side effects, and they may not be effective in all cases. Hence synthetic compounds exhibit promise as potential agents for cancer treatment. In a previous study, we identified (E)-N'- (2,3,4-trihydroxybenzylidene) isonicotinohydrazide (ITHB4) as a novel antimycobacterial derivative of isoniazid with cytotoxic effects on the MCF-7 breast cancer cell line. This led us to investigate the potential anti-cancer properties of ITHB4 against adenocarcinoma gastric (AGS) cell line. The cytotoxic effect of ITHB4 has been determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and further confirmed for anticancer properties by means of apoptosis, reactive oxygen species (ROS), nuclear fragmentation, lactate dehydrogenase (LDH), caspases, cytokines and morphological including phenotypic changes of cells assay. The ITHB4 demonstrated a lower IC50 in inhibiting growth of AGS cells at 24 h compared to 48 and 72 h. ITHB4 has also shown no toxicity human immune cells. Treatment of ITHB4 against AGS for 24 h eventually lead to formation of early apoptotic AGS cells, reduced mitochondrial membrane potential, nuclear condensation, and nuclear fragmentation lastly increased in ROS levels together with the release of LDH, and secretion of caspases. The altered cytokine profile in ITHB4 treated AGS hints at the possibility that ITHB4 may possess anti-tumor and anti-inflammatory properties. Our results in this study demonstrate that ITHB4 has almost similar chemotherapeutic properties against gastric adenocarcinoma cells compared to breast cancer cell. This is suggesting that the anticancer capabilities of this compound should be in vivo and clinically assessed.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias da Mama , Neoplasias Gástricas , Humanos , Feminino , Neoplasias Gástricas/metabolismo , Isoniazida/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Apoptose , Caspases , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Adenocarcinoma/metabolismo , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células
4.
Artigo em Inglês | MEDLINE | ID: mdl-37773580

RESUMO

Almost 70% of clinically used antineoplastic drugs are originated from natural products such as plants, marine organism, and microorganisms and some of them are also structurally modified natural products. The naturally occurring drugs may specifically act as inducers of selective cytotoxicity, anti-metastatic, anti-mutagenic, anti-angiogenesis, antioxidant accelerators, apoptosis inducers, autophagy inducers, and cell cycle inhibitors in cancer therapy. Precisely, several reports have demonstrated the involvement of naturally occurring anti-breast cancer drugs in regulating the expression of oncogenic and tumor suppressors associated with carcinogen metabolism and signaling pathways. Anticancer therapies based on nanotechnology have the potential to improve patient outcomes through targeted therapy, improved drug delivery, and combination therapies. This paper has reviewed the current treatment for breast cancer and the potential disadvantages of those therapies, besides the various mechanism used by naturally occurring phytochemicals to induce apoptosis in different types of breast cancer. Along with this, the contribution of nanotechnology in improving the effectiveness of anticancer drugs was also reviewed. With the development of sciences and technologies, phytochemicals derived from natural products are continuously discovered; however, the search for novel natural products as chemoprevention drugs is still ongoing, especially for the advanced stage of breast cancer. Continued research and development in this field hold great promise for advancing cancer care and improving patient outcomes.

5.
PeerJ ; 11: e15305, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361034

RESUMO

Background: Uropathogenic Escherichia coli (UPEC) is the predominant agent causing various categories of complicated urinary tract infections (cUTI). Although existing data reveals that UPEC harboured numerous virulence determinants to aid its survival in the urinary tract, the reason behind the occurrence of differences in the clinical severity of uninary tract infections (UTI) demonstrated by the UPEC infection is poorly understood. Therefore, the present study aims to determine the distribution of virulence determinants and antimicrobial resistance among different phylogroups of UPEC isolated from various clinical categories of cUTI and asymptomatic bacteriuria (ASB) E. coli isolates. The study will also attempt a relational analysis of the genotypic characteristics of cUTI UPEC and ASB E. coli isolates. Methods: A total of 141 UPEC isolates from cUTI and 160 ASB E. coli isolates were obtained from Universiti Malaya Medical Centre (UMMC). Phylogrouping and the occurrence of virulence genes were investigated using polymerase chain reaction (PCR). Antimicrobial susceptibility of the isolates to different classes of antibiotics was determined using the Kirby Bauer Disc Diffusion method. Results: The cUTI isolates were distributed differentially among both Extraintestinal Pathogenic E. coli (ExPEC) and non-ExPEC phylogroups. Phylogroup B2 isolates were observed to possess the highest average aggregative virulence score (7.17), a probable representation of the capability to cause severe disease. Approximately 50% of the cUTI isolates tested in this study were multidrug resistant against common antibiotics used to treat UTI. Analysis of the occurrence of virulence genes among different cUTI categories demonstrated that UPEC isolates of pyelonephritis and urosepsis were highly virulent and had the highest average aggregative virulence scores of 7.80 and 6.89 respectively, compared to other clinical categories. Relational analysis of the occurrence of phylogroups and virulence determinants of UPEC and ASB E. coli isolates showed that 46.1% of UPEC and 34.3% of ASB E. coli from both categories were distributed in phylogroup B2 and had the highest average aggregative virulence score of 7.17 and 5.37, respectively. The data suggest that UPEC isolates which carry virulence genes from all four virulence genes groups studied (adhesions, iron uptake systems, toxins and capsule synthesis) and isolates from phylogroup B2 specifically could predispose to severe UTI involving the upper urinary tract. Therefore, specific analysis of the genotypic characteristics of UPEC could be further explored by incorporating the combination of virulence genes as a prognostic marker for predicting disease severity, in an attempt to propose a more evidence driven treatment decision-making for all UTI patients. This will go a long way in enhancing favourable therapeutic outcomes and reducing the antimicrobial resistance burden among UTI patients.


Assuntos
Bacteriúria , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Bacteriúria/tratamento farmacológico , Escherichia coli Uropatogênica/genética , Infecções Urinárias/tratamento farmacológico , Fatores de Virulência/genética , Antibacterianos/farmacologia
6.
In Vivo ; 35(5): 2675-2685, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34410956

RESUMO

BACKGROUND/AIM: Isoniazid is an antibiotic used for the treatment of tuberculosis. Previously, we found that the isoniazid derivative (E)-N'-(2,3,4-trihydroxybenzylidene) isonicotinohydrazide (ITHB4) could be developed as novel antimycobacterial agent by lead optimization. We further explored the ability of this compound compared to zerumbone in inhibiting the growth of MCF-7 breast cancer cells. MATERIALS AND METHODS: Cytotoxicity was measured by the MTT assay and further confirmed via apoptosis, ROS, cell cycle, DNA fragmentation and cytokine assays. RESULTS: ITHB4 demonstrated a lower IC50 compared to zerumbone in inhibiting the proliferation of MCF-7 cells. ITHB4 showed no toxicity against normal breast and human immune cells. Apoptosis assay revealed that ITHB4, at a concentration equal to the IC50, induces apoptosis of MCF-7 cells and cell cycle arrest at the sub-G1 and G2/M phases. ITHB4 triggered accumulation of intracellular ROS and nuclear DNA fragmentation. Secretion of pro-inflammatory cytokines induced inflammation and potentially immunogenic cell death. CONCLUSION: ITHB4 has almost similar chemotherapeutic properties as zerumbone in inhibiting MCF-7 growth, and hence provide the basis for further experiments in animal models.


Assuntos
Antineoplásicos , Neoplasias da Mama , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Sobrevivência Celular , Feminino , Humanos , Isoniazida/uso terapêutico , Isoniazida/toxicidade , Células MCF-7 , Espécies Reativas de Oxigênio
7.
Iran J Basic Med Sci ; 24(11): 1538-1545, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35317109

RESUMO

Objectives: To investigate the potential anti-breast cancer activity of zerumbone in regulating apoptotic mediators and cytokines in comparison with paclitaxel (positive control). Materials and Methods: In this study, assays such as viability, apoptosis, reactive oxygen species, cell cycle, DNA fragmentation, and cytokines were carried out on MCF-7 cells after treatment with zerumbone and paclitaxel. Results: The results showed that zerumbone demonstrated a higher (18-fold) IC50 value (126.7 µg/ml) than paclitaxel (7.29 µg/ml) in order to suppress proliferation and induce cell death of MCF-7. The cell cycle arrest at the G0/G1 phase and excessive intracellular ROS production during the in vitro zerumbone treatment indicated occurrence of apoptotic cell death although nuclear DNA fragmentation was not observed. The flow cytometer analysis of treated cells revealed secretion of proinflammatory cytokines suggesting the potential immunomodulatory activity of zerumbone. Conclusion: Although, zerumbone exhibited a higher IC50 value compared with paclitaxel yet its anticancer activity against MCF-7 cells is still parallel to paclitaxel hence zerumbone has the potential to be an antineoplastic agent in the treatment of breast cancer especially the luminal type A.

8.
PLoS One ; 15(1): e0228217, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31990962

RESUMO

Escherichia coli (E. coli) from the B2 phylogenetic group is implicated in colorectal cancer (CRC) as it possesses a genomic island, termed polyketide synthetase (pks), which codes for the synthesis of colibactin, a genotoxin that induces DNA damage, cell cycle arrest, mutations and chromosomal instability in eukaryotic cells. The aim of this study was to detect and compare the prevalence of E. coli expressing pks (pks+ E. coli) in CRC patients and healthy controls followed by investigating the virulence triggered by pks+ E. coli using an in-vitro model. Mucosal colon tissues were collected and processed to determine the presence of pks+ E. coli. Thereafter, primary colon epithelial (PCE) and colorectal carcinoma (HCT116) cell lines were used to detect cytopathic response to the isolated pks+ E. coli strains. Our results showed 16.7% and 4.3% of CRC and healthy controls, respectively were pks+ E. coli. Further, PCE displayed syncytia and cell swelling and HCT116 cells, megalocytosis, in response to treatment with the isolated pks+ E. coli strains. In conclusion, pks+ E. coli was more often isolated from tissue of CRC patients compared to healthy individuals, and our in-vitro assays suggest these isolated strains may be involved in the initiation and development of CRC.


Assuntos
Centros Médicos Acadêmicos/estatística & dados numéricos , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/microbiologia , Escherichia coli/enzimologia , Escherichia coli/fisiologia , Policetídeo Sintases/metabolismo , Idoso , Feminino , Humanos , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Prevalência
9.
BMC Infect Dis ; 18(1): 455, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185168

RESUMO

BACKGROUND: Burkholderia pseudomallei is the causative agent of melioidosis, which is a potentially life threatening disease endemic in Southeast Asian countries. In Malaysia, cystic fibrosis (CF) is an uncommon condition. The association between CF and B.pseudomallei infections has been reported previously. However, this is the first case report of a pediatric melioidosis relapse and co-infection with other Gram-negative bacteria in Malaysia. CASE PRESENTATION: A 14-year-old Chinese Malaysian boy presented with a history of recurrent pneumonia, poor growth and steatorrhoea since childhood, and was diagnosed with CF. B. pseudomallei was cultured from his sputum during three different admissions between 2013 and 2016. However, the patient succumbed to end stage of respiratory failure in 2017 despite antibiotics treatment against B.pseudomallei. The isolates were compared using multilocus-sequence typing and repetitive-element polymerase chain reaction (PCR), and confirmed that two of the isolates were of same sequence type, which may indicate relapse. CONCLUSIONS: CF patients should be aware of melioidosis in endemic regions, as it is an emerging infectious disease, especially when persistent or recurrent respiratory symptoms and signs of infection occur. The high prevalence rates of melioidosis in Malaysia warrants better management options to improve quality of life, and life expectancy in patients with CF. Travel activities to endemic regions should also be given more consideration, as this would be crucial to identify and initiate appropriate empiric treatment.


Assuntos
Fibrose Cística/diagnóstico , Melioidose/diagnóstico , Adolescente , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Burkholderia pseudomallei/efeitos dos fármacos , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/isolamento & purificação , Doença Crônica , Fibrose Cística/complicações , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Humanos , Malásia , Masculino , Melioidose/complicações , Melioidose/tratamento farmacológico , Tipagem de Sequências Multilocus , Pneumonia/complicações , Pneumonia/diagnóstico , Recidiva , Escarro/microbiologia , Tomografia Computadorizada por Raios X
10.
Environ Microbiol Rep ; 10(2): 217-225, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29393577

RESUMO

Physiological constituents in airway surface liquids (ASL) appear to impact the adherence and invasion potentials of Burkholderia pseudomallei contributing to recrudescent melioidosis. Here, we investigated the factors present in ASL that is likely to influence bacterial adhesion and invasion leading to improved understanding of bacterial pathogenesis. Six B. pseudomallei clinical isolates from different origins were used to investigate the ability of the bacteria to adhere and invade A549 human lung epithelial cells using a system that mimics the physiological ASL with different pH, NaCl, KCl, CaCl2 and glucose concentrations. These parameters resulted in markedly differential adherence and invasion abilities of B. pseudomallei to the lung epithelial cells. The concentration of 20 mM glucose dramatically increased adherence and invasion by increasing the rate of pili formation in depiliated bacteria. Glucose significantly increased adherence and invasion of B. pseudomallei to A549 cells, and presence of NaCl, KCl and CaCl2 markedly ablated the effect despite the presence of glucose. Our data established a link between glucose, enhanced adhesion and invasion potentials of B. pseudomallei, hinting increased susceptibility of individuals with diabetes mellitus to clinical melioidosis.


Assuntos
Aderência Bacteriana , Burkholderia pseudomallei/fisiologia , Células Epiteliais/metabolismo , Glucose/metabolismo , Pulmão/metabolismo , Melioidose/metabolismo , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/patogenicidade , Células Epiteliais/microbiologia , Humanos , Pulmão/microbiologia , Melioidose/microbiologia , Virulência
11.
PLoS Negl Trop Dis ; 10(7): e0004730, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27367858

RESUMO

BACKGROUND: Burkholderia pseudomallei, the causative agent of melioidosis poses a serious threat to humankind. B. pseudomallei secretes numerous virulence proteins that alter host cell functions to escape from intracellular immune sensors. However, the events underlying disease pathogenesis are poorly understood. METHODS: We determined the ability of B. pseudomallei to invade and survive intracellularly in A549 human lung epithelial cells, and also investigated the early transcriptional responses using an Illumina HumanHT-12 v4 microarray platform, after three hours of exposure to live B. pseudomallei (BCMS) and its secreted proteins (CCMS). RESULTS: We found that the ability of B. pseudomallei to invade and survive intracellularly correlated with increase of multiplicity of infection and duration of contact. Activation of host carbohydrate metabolism and apoptosis as well as suppression of amino acid metabolism and innate immune responses both by live bacteria and its secreted proteins were evident. These early events might be linked to initial activation of host genes directed towards bacterial dissemination from lungs to target organs (via proposed in vivo mechanisms) or to escape potential sensing by macrophages. CONCLUSION: Understanding the early responses of A549 cells toward B. pseudomallei infection provide preliminary insights into the likely pathogenesis mechanisms underlying melioidosis, and could contribute to development of novel intervention strategies to combat B. pseudomallei infections.


Assuntos
Burkholderia pseudomallei/fisiologia , Células Epiteliais/microbiologia , Pulmão/imunologia , Melioidose/imunologia , Melioidose/microbiologia , Burkholderia pseudomallei/crescimento & desenvolvimento , Células Epiteliais/imunologia , Humanos , Imunidade Inata , Pulmão/microbiologia , Macrófagos/imunologia
12.
PLoS One ; 10(5): e0127398, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996927

RESUMO

Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV]) to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA) and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno) is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk), ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis.


Assuntos
Células Epiteliais Alveolares/microbiologia , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/metabolismo , Proteoma , Proteômica , Linhagem Celular , Sobrevivência Celular , Biologia Computacional , Células Epiteliais , Humanos , Viabilidade Microbiana , Proteômica/métodos
13.
J Proteomics ; 106: 205-20, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24742602

RESUMO

Colony morphology variation is a characteristic of Burkholderia pseudomallei primary clinical isolates, associated with variations in expression of virulence factors. Here, we performed comparative investigations on adhesion, invasion, plaque-forming abilities and protein profiles of B. pseudomallei wild-type (WT) and a small colony variant (SCV). The percentage of SCV adherence to A549 cells was significantly higher (2.73%) than WT (1.91%). In contrast, WT was significantly more efficient (0.63%) than SCV (0.31%) in invasiveness and in inducing cellular damage. Using 2-DE and MALDI TOF/TOF, 263 and 258 protein spots were detected in WT and SCV, respectively. Comparatively, 49 proteins were differentially expressed in SCV when compared with WT. Of these, 31 proteins were up-regulated, namely, nucleoside diphosphate kinase (Ndk), phosphoglycerate kinase (Pgk), thioredoxin (TrxA), putative ferritin DPS-family DNA-binding protein (DPS) and oxidoreductase (AhpC) that are known to be involved in adhesion, intracellular survival and persistence. However, among the 18 down-regulated proteins, enolase (Eno), elongation factor (EF-Tu) and universal stress-related proteins were associated with invasion and virulence. Differences observed in these protein profiles provide ample clues to their association with the morphotypic and phenotypic characteristics of colony variants, providing additional insights into the potential association of B. pseudomallei colony morphotypes with disease pathogenesis. BIOLOGICAL SIGNIFICANCE: Comparative analyses were performed on the ability of wild-type and small colony variant of B. pseudomallei to adhere, invade and form plaques on human epithelial cells. In addition, proteomic analysis of these different colony morphotypes was also carried out. This research provides insights into the virulence and pathogenesis attributes of B. pseudomallei and contributes to better understand the pathogenesis of melioidosis.


Assuntos
Burkholderia pseudomallei/citologia , Células Epiteliais/microbiologia , Regulação Bacteriana da Expressão Gênica , Fatores de Virulência/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Biomarcadores/metabolismo , Burkholderia pseudomallei/patogenicidade , Linhagem Celular Tumoral , Bases de Dados de Proteínas , Perfilação da Expressão Gênica , Humanos , Espectrometria de Massas , Melioidose/microbiologia , Proteoma , Proteômica , Virulência/genética
14.
PLoS One ; 8(10): e77418, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24116227

RESUMO

Burkholderia cepacia is an opportunistic human pathogen associated with life-threatening pulmonary infections in immunocompromised individuals. Pathogenesis of B. cepacia infection involves adherence, colonisation, invasion, survival and persistence in the host. In addition, B. cepacia are also known to secrete factors, which are associated with virulence in the pathogenesis of the infection. In this study, the host factor that may be the cause of the infection was elucidated in human epithelial cell line, A549, that was exposed to live B. cepacia (mid-log phase) and its secretory proteins (mid-log and early-stationary phases) using the Illumina Human Ref-8 microarray platform. The non-infection A549 cells were used as a control. Expression of the host genes that are related to apoptosis, inflammation and cell cycle as well as metabolic pathways were differentially regulated during the infection. Apoptosis of the host cells and secretion of pro-inflammatory cytokines were found to be inhibited by both live B. cepacia and its secretory proteins. In contrast, the host cell cycle and metabolic processes, particularly glycolysis/glycogenesis and fatty acid metabolism were transcriptionally up-regulated during the infection. Our microarray analysis provided preliminary insights into mechanisms of B. cepacia pathogenesis. The understanding of host response to an infection would provide novel therapeutic targets both for enhancing the host's defences and repressing detrimental responses induced by the invading pathogen.


Assuntos
Infecções por Burkholderia/fisiopatologia , Burkholderia cepacia/fisiologia , Interações Hospedeiro-Patógeno , Apoptose , Infecções por Burkholderia/genética , Infecções por Burkholderia/imunologia , Infecções por Burkholderia/metabolismo , Linhagem Celular , Citocinas/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Regulação da Expressão Gênica , Homeostase , Humanos , Redes e Vias Metabólicas
15.
PLoS One ; 6(10): e26518, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22046299

RESUMO

BACKGROUND: Burkholderia cepacia is a Gram-negative pathogen that causes serious respiratory infections in immunocompromised patients and individuals with cystic fibrosis. This bacterium is known to release extracellular proteins that may be involved in virulence. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, B. cepacia grown to mid-logarithmic and early-stationary phases were investigated on their ability to invade and survive intracellularly in A549 lung epithelial cells in order to discern the fate of these bacteria in the pathogenesis of B. cepacia lung infections in in vitro condition. The early-stationary phase B. cepacia was demonstrated to be more invasive than mid-logarithmic phase. In addition, culture supernatants of B. cepacia obtained from these phases of growth were also demonstrated to cause different cytotoxic potency on the A549 human lung epithelial cells. Profiling of the supernatants using the gel-based proteomics approach identified 43 proteins that were commonly released in both the growth phases and 40 proteins newly-released at the early-stationary phase. The latter proteins may account for the higher cytotoxic activity of the early-stationary culture supernatant compared to that obtained at the mid-logarithmic phase. Among the newly-released proteins in the early-stationary phase supernatant were flagellar hook-associated domain protein (FliD), flagellar hook-associated protein (FlgK), TonB-dependent siderophore (Fiu), Elongation factor G (FusA), phosphoglycerate kinase (Pgk) and sulfatase (AslA) which are known for their virulence. CONCLUSION/SIGNIFICANCE: Differences in the ability of B. cepacia to invade and survive intracellularly inside the epithelial cells at different phases of growth may improve our understanding of the varied disease progressions associated with B. cepacia infections. In addition, the identified culture supernatant proteins may be used as targets for the development of new strategies to control B. cepacia infection using agents that can block their release.


Assuntos
Proteínas de Bactérias/análise , Sistemas de Secreção Bacterianos , Burkholderia cepacia/química , Burkholderia cepacia/crescimento & desenvolvimento , Proteômica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Linhagem Celular , Células Epiteliais/microbiologia , Humanos , Infecções Respiratórias/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA