Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(47): E10092-E10101, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109256

RESUMO

Eukaryotic cells chemotax in a wide range of chemoattractant concentration gradients, and thus need inhibitory processes that terminate cell responses to reach adaptation while maintaining sensitivity to higher-concentration stimuli. However, the molecular mechanisms underlying inhibitory processes are still poorly understood. Here, we reveal a locally controlled inhibitory process in a GPCR-mediated signaling network for chemotaxis in Dictyostelium discoideum We identified a negative regulator of Ras signaling, C2GAP1, which localizes at the leading edge of chemotaxing cells and is activated by and essential for GPCR-mediated Ras signaling. We show that both C2 and GAP domains are required for the membrane targeting of C2GAP1, and that GPCR-triggered Ras activation is necessary to recruit C2GAP1 from the cytosol and retains it on the membrane to locally inhibit Ras signaling. C2GAP1-deficient c2gapA- cells have altered Ras activation that results in impaired gradient sensing, excessive polymerization of F actin, and subsequent defective chemotaxis. Remarkably, these cellular defects of c2gapA- cells are chemoattractant concentration dependent. Thus, we have uncovered an inhibitory mechanism required for adaptation and long-range chemotaxis.


Assuntos
Quimiotaxia/genética , Dictyostelium/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas de Protozoários/genética , Proteínas ras/genética , Actinas/genética , Actinas/metabolismo , Adaptação Fisiológica , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Quimiotaxia/efeitos dos fármacos , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Citosol/efeitos dos fármacos , Citosol/metabolismo , Dictyostelium/efeitos dos fármacos , Dictyostelium/genética , Dictyostelium/ultraestrutura , Proteínas Ativadoras de GTPase/deficiência , Regulação da Expressão Gênica , Transporte Proteico , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo
2.
Dev Cell ; 37(5): 458-72, 2016 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-27237792

RESUMO

Chemotaxis, or directional movement toward extracellular chemical gradients, is an important property of cells that is mediated through G-protein-coupled receptors (GPCRs). Although many chemotaxis pathways downstream of Gßγ have been identified, few Gα effectors are known. Gα effectors are of particular importance because they allow the cell to distinguish signals downstream of distinct chemoattractant GPCRs. Here we identify GflB, a Gα2 binding partner that directly couples the Dictyostelium cyclic AMP GPCR to Rap1. GflB localizes to the leading edge and functions as a Gα-stimulated, Rap1-specific guanine nucleotide exchange factor required to balance Ras and Rap signaling. The kinetics of GflB translocation are fine-tuned by GSK-3 phosphorylation. Cells lacking GflB display impaired Rap1/Ras signaling and actin and myosin dynamics, resulting in defective chemotaxis. Our observations demonstrate that GflB is an essential upstream regulator of chemoattractant-mediated cell polarity and cytoskeletal reorganization functioning to directly link Gα activation to monomeric G-protein signaling.


Assuntos
Quimiotaxia , Dictyostelium/citologia , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Protozoários/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Actinas/metabolismo , Quimiotaxia/efeitos dos fármacos , AMP Cíclico/farmacologia , Dictyostelium/efeitos dos fármacos , Dictyostelium/metabolismo , Ativação Enzimática/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Modelos Biológicos , Miosina Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Polimerização/efeitos dos fármacos , Proteínas ras/metabolismo
3.
Elife ; 42015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25815683

RESUMO

Cells use phagocytosis and macropinocytosis to internalise bulk material, which in phagotrophic organisms supplies the nutrients necessary for growth. Wildtype Dictyostelium amoebae feed on bacteria, but for decades laboratory work has relied on axenic mutants that can also grow on liquid media. We used forward genetics to identify the causative gene underlying this phenotype. This gene encodes the RasGAP Neurofibromin (NF1). Loss of NF1 enables axenic growth by increasing fluid uptake. Mutants form outsized macropinosomes which are promoted by greater Ras and PI3K activity at sites of endocytosis. Relatedly, NF1 mutants can ingest larger-than-normal particles using phagocytosis. An NF1 reporter is recruited to nascent macropinosomes, suggesting that NF1 limits their size by locally inhibiting Ras signalling. Our results link NF1 with macropinocytosis and phagocytosis for the first time, and we propose that NF1 evolved in early phagotrophs to spatially modulate Ras activity, thereby constraining and shaping their feeding structures.


Assuntos
Dictyostelium/genética , Neurofibromina 1/genética , Fagocitose/genética , Pinocitose/genética , Proteínas de Protozoários/genética , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/metabolismo , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/metabolismo , Endocitose/genética , Mutação , Neurofibromina 1/metabolismo , Fagossomos/genética , Fagossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Transdução de Sinais/genética , Proteínas ras/metabolismo
4.
PLoS Biol ; 12(10): e1001966, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25313567

RESUMO

The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient.


Assuntos
Movimento Celular , Quimiotaxia , Lisofosfolipídeos/metabolismo , Melanoma/metabolismo , Metástase Neoplásica , Animais , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos
5.
J Cell Biol ; 204(4): 497-505, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24535823

RESUMO

In eukaryotic chemotaxis, the mechanisms connecting external signals to the motile apparatus remain unclear. The role of the lipid phosphatidylinositol 3,4,5-trisphosphate (PIP3) has been particularly controversial. PIP3 has many cellular roles, notably in growth control and macropinocytosis as well as cell motility. Here we show that PIP3 is not only unnecessary for Dictyostelium discoideum to migrate toward folate, but actively inhibits chemotaxis. We find that macropinosomes, but not pseudopods, in growing cells are dependent on PIP3. PIP3 patches in these cells show no directional bias, and overall only PIP3-free pseudopods orient up-gradient. The pseudopod driver suppressor of cAR mutations (SCAR)/WASP and verprolin homologue (WAVE) is not recruited to the center of PIP3 patches, just the edges, where it causes macropinosome formation. Wild-type cells, unlike the widely used axenic mutants, show little macropinocytosis and few large PIP3 patches, but migrate more efficiently toward folate. Tellingly, folate chemotaxis in axenic cells is rescued by knocking out phosphatidylinositide 3-kinases (PI 3-kinases). Thus PIP3 promotes macropinocytosis and interferes with pseudopod orientation during chemotaxis of growing cells.


Assuntos
Quimiotaxia/fisiologia , Dictyostelium/fisiologia , Ácido Fólico/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Pinocitose/fisiologia , Movimento Celular/fisiologia , Mutação/genética , Proteínas de Protozoários/genética , Pseudópodes , Transdução de Sinais
6.
Methods Mol Biol ; 1046: 307-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23868596

RESUMO

Direct visualization chambers are considered the gold standard for measuring and analyzing chemotactic responses, because they allow detailed analysis of cellular behavior during the process of chemotaxis. We have previously described the Insall chamber, an improved chamber for measuring cancer cell chemotaxis. Here, we describe in detail how this system can be used to perform two key assays for both fast- and slow-moving mammalian and nonmammalian cell types. This allows for the detailed analysis of chemotactic responses in linear gradients at the levels of both overall cell behavior and subcellular dynamics.


Assuntos
Quimiotaxia , Microscopia/métodos , Biologia Molecular/métodos , Animais , Linhagem Celular Tumoral , Dictyostelium/citologia , Cultura em Câmaras de Difusão , Humanos , Neoplasias/genética , Neoplasias/patologia
7.
Dev Cell ; 24(2): 169-81, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23369714

RESUMO

WASH causes actin to polymerize on vesicles involved in retrograde traffic and exocytosis. It is found within a regulatory complex, but the physiological roles of the other four members are unknown. Here we present genetic analysis of the subunits' individual functions in Dictyostelium. Mutants in each subunit are completely blocked in exocytosis. All subunits except FAM21 are required to drive actin assembly on lysosomes. Without actin, lysosomes never recycle vacuolar-type H(+)-adenosine triphosphatase (V-ATPase) or neutralize to form postlysosomes. However, in FAM21 knockout lysosomes, WASH generates excessive, dynamic streams of actin. These successfully remove V-ATPase, neutralize, and form huge postlysosomes. The distinction between WASH and FAM21 phenotypes is conserved in human cells. Thus, FAM21 and WASH act at different steps of a cyclical pathway in which FAM21 mediates recycling of the complex back to acidic lysosomes. Recycling is driven by FAM21's interaction with capping protein, which couples the WASH complex to dynamic actin on vesicles.


Assuntos
Proteínas de Capeamento de Actina/metabolismo , Dictyostelium/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Protozoários/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Actinas/metabolismo , Linhagem Celular Tumoral , Dictyostelium/genética , Exocitose , Humanos , Lisossomos/metabolismo , Proteínas dos Microfilamentos/genética , Mutação , Proteínas de Protozoários/genética , Interferência de RNA , RNA Interferente Pequeno , Proteínas de Transporte Vesicular/genética
8.
Curr Biol ; 23(2): 107-17, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23273897

RESUMO

BACKGROUND: The Scar/WAVE regulatory complex (WRC) drives lamellipodia assembly via the Arp2/3 complex, whereas the Arp2/3 activator N-WASP is not essential for 2D migration but is increasingly implicated in 3D invasion. It is becoming ever more apparent that 2D and 3D migration utilize the actin cytoskeletal machinery differently. RESULTS: We discovered that WRC and N-WASP play opposing roles in 3D epithelial cell migration. WRC depletion promoted N-WASP/Arp2/3 complex activation and recruitment to leading invasive edges and increased invasion. WRC disruption also altered focal adhesion dynamics and drove FAK activation at leading invasive edges. We observed coalescence of focal adhesion components together with N-WASP and Arp2/3 complex at leading invasive edges in 3D. Unexpectedly, WRC disruption also promoted FAK-dependent cell transformation and tumor growth in vivo. CONCLUSIONS: N-WASP has a crucial proinvasive role in driving Arp2/3 complex-mediated actin assembly in cooperation with FAK at invasive cell edges, but WRC depletion can promote 3D cell motility.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Invasividade Neoplásica , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Transformação Celular Neoplásica , Adesões Focais/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Fosforilação , Ratos
9.
Autophagy ; 7(12): 1490-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22024750

RESUMO

The ability to respond and adapt to changes in the physical environment is a universal and essential cellular property. Here we demonstrated that cells respond to mechanical compressive stress by rapidly inducing autophagosome formation. We measured this response in both Dictyostelium and mammalian cells, indicating that this is an evolutionarily conserved, general response to mechanical stress. In Dictyostelium, the number of autophagosomes increased 20-fold within 10 min of 1 kPa pressure being applied and a similar response was seen in mammalian cells after 30 min. We showed in both cell types that autophagy is highly sensitive to changes in mechanical pressure and the response is graduated, with half-maximal responses at ~0.2 kPa, similar to other mechano-sensitive responses. We further showed that the mechanical induction of autophagy is TOR-independent and transient, lasting until the cells adapt to their new environment and recover their shape. The autophagic response is therefore part of an integrated response to mechanical challenge, allowing cells to cope with a continuously changing physical environment.


Assuntos
Autofagia , Dictyostelium/citologia , Estresse Mecânico , Adaptação Fisiológica , Animais , Linhagem Celular Tumoral , Dictyostelium/fisiologia , Humanos , Fagossomos/metabolismo , Pressão , Serina-Treonina Quinases TOR/metabolismo
10.
PLoS One ; 5(12): e15309, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21179457

RESUMO

There has been a growing appreciation over the last decade that chemotaxis plays an important role in cancer migration, invasion and metastasis. Research into the field of cancer cell chemotaxis is still in its infancy and traditional investigative tools have been developed with other cell types and purposes in mind. Direct visualisation chambers are considered the gold standard for investigating the behaviour of cells migrating in a chemotactic gradient. We therefore drew up a list of key attributes that a chemotaxis chamber should have for investigating cancer cell chemotaxis. These include (1) compatibility with thin cover slips for optimal optical properties and to allow use of high numerical aperture (NA) oil immersion objectives; (2) gradients that are relatively stable for at least 24 hours due to the slow migration of cancer cells; (3) gradients of different steepnesses in a single experiment, with defined, consistent directions to avoid the need for complicated analysis; and (4) simple handling and disposability for use with medical samples. Here we describe and characterise the Insall chamber, a novel direct visualisation chamber. We use it to show GFP-lifeact transfected MV3 melanoma cells chemotaxing using a 60x high NA oil immersion objective, which cannot usually be done with other chemotaxis chambers. Linear gradients gave very efficient chemotaxis, contradicting earlier results suggesting that only polynomial gradients were effective. In conclusion, the chamber satisfies our design criteria, most importantly allowing high NA oil immersion microscopy to track chemotaxing cancer cells in detail over 24 hours.


Assuntos
Quimiotaxia , Microscopia/métodos , Neoplasias/patologia , Adesão Celular , Linhagem Celular Tumoral , Desenho de Equipamento , Fibronectinas/química , Fluoresceína/química , Proteínas de Fluorescência Verde/metabolismo , Humanos , Melanoma/patologia , Microscopia de Contraste de Fase/métodos , Metástase Neoplásica , Neoplasias/metabolismo , Fatores de Tempo
11.
J Cell Sci ; 123(Pt 13): 2246-55, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20530573

RESUMO

Cell division requires the tight coordination of multiple cytoskeletal pathways. The best understood of these involves myosin-II-dependent constriction around the cell equator, but both Dictyostelium and mammalian cells also use a parallel, adhesion-dependent mechanism to generate furrows. We show that the actin nucleation factor SCAR/WAVE is strongly activated during Dictyostelium cytokinesis. This activation localises to large polar protrusions, driving separation of the daughter cells. This continues for 10 minutes after division before the daughter cells revert to normal random motility, indicating that this is a tightly regulated process. We demonstrate that SCAR activity is essential to drive myosin-II-independent cytokinesis, and stabilises the furrow, ensuring symmetrical division. SCAR is also responsible for the generation of MiDASes, mitosis-specific actin-rich adhesions. Loss of SCAR in both Dictyostelium and Drosophila leads to a similar mitotic phenotype, with severe mitotic blebbing, indicating conserved functionality. We also find that the microtubule end-binding protein EB1 is required to restrict SCAR localisation and direct migration. EB1-null cells also exhibit decreased adhesion during mitosis. Our data reveal a spindle-directed signalling pathway that regulates SCAR activity, migration and adhesion at mitosis.


Assuntos
Citocinese/fisiologia , Mitose/fisiologia , Miosinas/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Movimento Celular/fisiologia , Dictyostelium/citologia , Dictyostelium/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Fuso Acromático/metabolismo
12.
J Cell Biol ; 180(4): 747-53, 2008 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-18299345

RESUMO

Chemotaxis is the ability of cells to move in the direction of an external gradient of signaling molecules. Cells are guided by actin-filled protrusions in the front, whereas myosin filaments retract the rear of the cell. Previous work demonstrated that chemotaxis of unpolarized amoeboid Dictyostelium discoideum cells is mediated by two parallel pathways, phosphoinositide-3-kinase (PI3K) and phospholipase A2 (PLA2). Here, we show that polarized cells exhibit very good chemotaxis with inhibited PI3K and PLA2 activity. Using genetic screens, we demonstrate that this activity is mediated by a soluble guanylyl cyclase, providing two signals. The protein localizes to the leading edge where it interacts with actin filaments, whereas the cyclic guanosine monophosphate product induces myosin filaments in the rear of the cell. We conclude that chemotaxis is mediated by multiple signaling pathways regulating protrusions at the front and rear of the cell. Cells that express only rear activity are polarized but do not exhibit chemotaxis, whereas cells with only front signaling are unpolarized but undergo chemotaxis.


Assuntos
Quimiotaxia/fisiologia , Dictyostelium/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipases A2/metabolismo , Transdução de Sinais/fisiologia , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Forma Celular/fisiologia , Extensões da Superfície Celular/enzimologia , Extensões da Superfície Celular/ultraestrutura , Dictyostelium/ultraestrutura , Guanosina Monofosfato/metabolismo , Guanilato Ciclase/metabolismo , Miosinas/metabolismo , Miosinas/ultraestrutura , Receptores Citoplasmáticos e Nucleares/metabolismo , Guanilil Ciclase Solúvel
13.
Sci STKE ; 2007(396): pe40, 2007 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-17652307

RESUMO

During chemotaxis, phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) accumulates at the leading edge of a eukaryotic cell, where it induces the formation of pseudopodia. PIP(3) has been suggested to be the compass of cells navigating in gradients of signaling molecules. Recent observations suggest that chemotaxis is more complex than previously anticipated. Complete inhibition of all PIP(3) signaling has little effect, and alternative pathways have been identified. In addition, selective pseudopod growth and retraction are more important in directing cell movement than is the place where new pseudopodia are formed.


Assuntos
Quimiotaxia/fisiologia , Dictyostelium/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Fosfatos de Fosfatidilinositol/fisiologia , Fosfolipases A/fisiologia , Proteínas de Protozoários/fisiologia , Pseudópodes/fisiologia , Sistemas do Segundo Mensageiro/fisiologia , Animais , Fatores Quimiotáticos/farmacologia , Quimiotaxia/efeitos dos fármacos , Cromonas/farmacologia , AMP Cíclico/fisiologia , GMP Cíclico/fisiologia , Citoesqueleto/ultraestrutura , Dictyostelium/efeitos dos fármacos , Dictyostelium/genética , Dictyostelium/ultraestrutura , Relação Dose-Resposta a Droga , Guanilato Ciclase/fisiologia , Modelos Biológicos , Morfolinas/farmacologia , Concentração Osmolar , PTEN Fosfo-Hidrolase/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosfolipases A/genética , Fosforilação , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Processos Estocásticos
14.
Mol Biol Cell ; 17(9): 3921-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16790492

RESUMO

Chemotaxis of amoeboid cells is driven by actin filaments in leading pseudopodia and actin-myosin filaments in the back and at the side of the cell to suppress pseudopodia. In Dictyostelium, cGMP plays an important role during chemotaxis and is produced predominantly by a soluble guanylyl cyclase (sGC). The sGC protein is enriched in extending pseudopodia at the leading edge of the cell during chemotaxis. We show here that the sGC protein and the cGMP product have different functions during chemotaxis, using two mutants that lose either catalytic activity (sGCDelta cat) or localization to the leading edge (sGCDeltaN). Cells expressing sGCDeltaN exhibit excellent cGMP formation and myosin localization in the back of the cell, but they exhibit poor orientation at the leading edge. Cells expressing the catalytically dead sGCDelta cat mutant show poor myosin localization at the back, but excellent localization of the sGC protein at the leading edge, where it enhances the probability that a new pseudopod is made in proximity to previous pseudopodia, resulting in a decrease of the degree of turning. Thus cGMP suppresses pseudopod formation in the back of the cell, whereas the sGC protein refines pseudopod formation at the leading edge.


Assuntos
Polaridade Celular/fisiologia , Quimiotaxia/fisiologia , GMP Cíclico/metabolismo , Dictyostelium/citologia , Dictyostelium/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Actinas/metabolismo , Animais , Polaridade Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , AMP Cíclico/farmacologia , Dictyostelium/efeitos dos fármacos , Dictyostelium/enzimologia , Guanilato Ciclase , Proteínas Mutantes/metabolismo , Miosinas/metabolismo , Transporte Proteico/efeitos dos fármacos , Guanilil Ciclase Solúvel
15.
Mol Biol Cell ; 16(2): 976-83, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15601898

RESUMO

Dictyostelium contains two guanylyl cyclases, GCA, a 12-transmembrane enzyme, and sGC, a homologue of mammalian soluble adenylyl cyclase. sGC provides nearly all chemoattractant-stimulated cGMP formation and is essential for efficient chemotaxis toward cAMP. We show that in resting cells the major fraction of the sGC-GFP fusion protein localizes to the cytosol, and a small fraction is associated to the cell cortex. With the artificial substrate Mn2+/GTP, sGC activity and protein exhibit a similar distribution between soluble and particulate fraction of cell lysates. However, with the physiological substrate Mg2+/GTP, sGC in the cytosol is nearly inactive, whereas the particulate enzyme shows high enzyme activity. Reconstitution experiments reveal that inactive cytosolic sGC acquires catalytic activity with Mg2+/GTP upon association to the membrane. Stimulation of cells with cAMP results in a twofold increase of membrane-localized sGC-GFP, which is accompanied by an increase of the membrane-associated guanylyl cyclase activity. In a cAMP gradient, sGC-GFP localizes to the anterior cell cortex, suggesting that in chemotacting cells, sGC is activated at the leading edge of the cell.


Assuntos
Membrana Celular/metabolismo , Quimiotaxia , Dictyostelium/enzimologia , Guanilato Ciclase/metabolismo , Animais , Catálise , Polaridade Celular , AMP Cíclico/farmacologia , GMP Cíclico/biossíntese , Citosol/metabolismo , Dictyostelium/genética , Ativação Enzimática , Proteínas de Fluorescência Verde/metabolismo , Guanosina Trifosfato/metabolismo , Guanilato Ciclase/química , Guanilato Ciclase/efeitos dos fármacos , Guanilato Ciclase/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Magnésio/farmacologia , Manganês/farmacologia , Fusão de Membrana , Solubilidade , Especificidade por Substrato
16.
Biochim Biophys Acta ; 1623(2-3): 129-34, 2003 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-14572910

RESUMO

Chemoattractant stimulation of Dictyostelium cells leads to the opening of calcium channels in the plasma membrane, causing extracellular calcium to flux into the cell. The genetically uncharacterised mutants stmF and KI8 show strongly altered chemoattractant-stimulated cGMP responses. The aberrant calcium influx in these strains has provided evidence that the chemoattractant-stimulated calcium influx is potentiated by cGMP. We have tested this hypothesis in genetically defined mutants by measuring the calcium influx in a strain that lacks intracellular cGMP due to the disruption of two guanylyl cyclases, and in a strain with increased cGMP levels caused by the disruption of two cGMP-degrading phosphodiesterases. The results reveal that the calcium influx stimulated by cAMP or folic acid is essentially identical in these strains. We conclude that cGMP is not involved in chemoattractant-stimulated calcium influx.


Assuntos
Sinalização do Cálcio/fisiologia , GMP Cíclico/metabolismo , Dictyostelium/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , AMP Cíclico/farmacologia , Dictyostelium/efeitos dos fármacos , Dictyostelium/genética , Ácido Fólico/farmacologia , Genes de Protozoários , Cinética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA