Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Struct Heart ; 6(2): 100032, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37273734

RESUMO

Transcatheter aortic valve replacement (TAVR) is a rapidly growing field enabling replacement of diseased aortic valves without the need for open heart surgery. However, due to the nature of the procedure and nonremoval of the diseased tissue, there are rates of complications ranging from tissue rupture and coronary obstruction to paravalvular leak, valve thrombosis, and permanent pacemaker implantation. In recent years, computational modeling has shown a great deal of promise in its capabilities to understand the biomechanical implications of TAVR as well as help preoperatively predict risks inherent to device-patient-specific anatomy biomechanical interaction. This includes intricate replication of stent and leaflet designs and tested and validated simulated deployments with structural and fluid mechanical simulations. This review outlines current biomechanical understanding of device-related complications from TAVR and related predictive strategies using computational modeling. An outlook on future modeling strategies highlighting reduced order modeling which could significantly reduce the high time and cost that are required for computational prediction of TAVR outcomes is presented in this review paper. A summary of current commercial/in-development software is presented in the final section.

2.
Ann Biomed Eng ; 48(8): 2204-2217, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32372365

RESUMO

The Fontan procedure is a common palliative surgery for congenital single ventricle patients. In silico and in vitro patient-specific modeling approaches are widely utilized to investigate potential improvements of Fontan hemodynamics that are related to long-term complications. However, there is a lack of consensus regarding the use of non-Newtonian rheology, warranting a systematic investigation. This study conducted in silico patient-specific modeling for twelve Fontan patients, using a Newtonian and a non-Newtonian model for each patient. Differences were quantified by examining clinically relevant metrics: indexed power loss (iPL), indexed viscous dissipation rate (iVDR), hepatic flow distribution (HFD), and regions of low wall shear stress (AWSS). Four sets of "non-Newtonian importance factors" were calculated to explore their effectiveness in identifying the non-Newtonian effect. No statistical differences were observed in iPL, iVDR, and HFD between the two models at the population-level, but large inter-patient variations exist. Significant differences were detected regarding AWSS, and its correlations with non-Newtonian importance factors were discussed. Additionally, simulations using the non-Newtonian model were computationally faster than those using the Newtonian model. These findings distinguish good importance factors for identifying non-Newtonian rheology and encourage the use of a non-Newtonian model to assess Fontan hemodynamics.


Assuntos
Técnica de Fontan , Hidrodinâmica , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Adolescente , Criança , Feminino , Humanos , Masculino , Estudos Retrospectivos
3.
Ann Biomed Eng ; 46(7): 927-939, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29594688

RESUMO

Progressive false lumen aneurysmal degeneration in type B aortic dissection (TBAD) is a complex process with a multi-factorial etiology. Patient-specific computational fluid dynamics (CFD) simulations provide spatial and temporal hemodynamic quantities that facilitate understanding this disease progression. A longitudinal study was performed for a TBAD patient, who was diagnosed with the uncomplicated TBAD in 2006 and treated with optimal medical therapy but received surgery in 2010 due to late complication. Geometries of the aorta in 2006 and 2010 were reconstructed. With registration algorithms, we accurately quantified the evolution of the false lumen, while with CFD simulations we computed several hemodynamic indexes, including the wall shear stress (WSS), and the relative residence time (RRT). The numerical fluid model included large eddy simulation (LES) modeling for efficiently capturing the flow disturbances induced by the entry tears. In the absence of complete patient-specific data, the boundary conditions were based on a specific calibration method. Correlations between hemodynamics and the evolution field in time obtained by registration of the false lumen are discussed. Further testing of this methodology on a large cohort of patients may enable the use of CFD to predict whether patients, with originally uncomplicated TBAD, develop late complications.


Assuntos
Algoritmos , Aorta/fisiopatologia , Dissecção Aórtica/fisiopatologia , Simulação por Computador , Hemodinâmica , Modelos Cardiovasculares , Dissecção Aórtica/patologia , Dissecção Aórtica/cirurgia , Aorta/cirurgia , Feminino , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade
4.
Ann Biomed Eng ; 43(6): 1321-34, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25316591

RESUMO

In surgical planning of the Fontan connection for single ventricle physiologies, there can be differences between the proposed and implemented options. Here, we developed a surgical planning framework that help determine the best performing option and ensures that the results will be comparable if there are slight geometrical variations. Eight patients with different underlying anatomies were evaluated in this study; surgical variations were created for each connection by changing either angle, offset or baffle diameter. Computational fluid dynamics were performed and the energy efficiency (indexed power loss-iPL) and hepatic flow distribution (HFD) computed. Differences with the original connection were evaluated: iPL was not considerably affected by the changes in geometry. For HFD, the single superior vena cava (SVC) connections presented less variability compared to the other anatomies. The Y-graft connection was the most robust overall, while the extra-cardiac connections showed dependency to offset. Bilateral SVC and interrupted inferior vena cava with azygous continuation showed high variability in HFD. We have developed a framework to assess the robustness of a surgical option for the TCPC; this will be useful to assess the most complex cases where pre-surgery planning could be most beneficial to ensure an efficient and robust hemodynamic performance.


Assuntos
Simulação por Computador , Técnica de Fontan/métodos , Hemodinâmica , Modelos Cardiovasculares , Feminino , Humanos , Masculino , Técnicas de Planejamento
5.
Am J Physiol Heart Circ Physiol ; 304(3): H473-86, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23203971

RESUMO

Spontaneous plaque rupture in mouse models of atherosclerosis is controversial, although numerous studies have discussed so-called "vulnerable plaque" phenotypes in mice. We compared the morphology and biomechanics of two acute and one chronic murine model of atherosclerosis to human coronaries of the thin-cap fibroatheroma (TCFA) phenotype. Our acute models were apolipoprotein E-deficient (ApoE(-/-)) and LDL receptor-deficient (LDLr(-/-)) mice, both fed a high-fat diet for 8 wk with simultaneous infusion of angiotensin II (ANG II), and our chronic mouse model was the apolipoprotein E-deficient strain fed a regular chow diet for 1 yr. We found that the mouse plaques from all three models exhibited significant morphological differences from human TCFA plaques, including the plaque burden, plaque thickness, eccentricity, and amount of the vessel wall covered by lesion as well as significant differences in the relative composition of plaques. These morphological differences suggested that the distribution of solid mechanical stresses in the walls may differ as well. Using a finite-element analysis computational solid mechanics model, we computed the relative distribution of stresses in the walls of murine and human plaques and found that although human TCFA plaques have the highest stresses in the thin fibrous cap, murine lesions do not have such stress distributions. Instead, local maxima of stresses were on the media and adventitia, away from the plaque. Our results suggest that if plaque rupture is possible in mice, it may be driven by a different mechanism than mechanics.


Assuntos
Aterosclerose/patologia , Placa Aterosclerótica/patologia , Angiotensina II/farmacologia , Animais , Apolipoproteínas E/genética , Aterosclerose/genética , Fenômenos Biomecânicos , Calcinose/patologia , Simulação por Computador , Gorduras na Dieta/toxicidade , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Knockout , Modelos Biológicos , Fenótipo , Placa Aterosclerótica/genética , Receptores de LDL/genética , Receptores de LDL/fisiologia , Estresse Mecânico
6.
J Appl Biomater Biomech ; 9(2): 109-17, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22065388

RESUMO

Over the last twenty years major advancements have taken place in the design of medical devices and personalized therapies. They have paralleled the impressive evolution of three-dimensional, non invasive, medical imaging techniques and have been continuously fuelled by increasing computing power and the emergence of novel and sophisticated software tools. This paper aims to showcase a number of major contributions to the advancements of modeling of surgical and interventional procedures and to the design of life support systems. The selected examples will span from pediatric cardiac surgery procedures to valve and ventricle repair techniques, from stent design and endovascular procedures to life support systems and innovative ventilation techniques.


Assuntos
Engenharia Biomédica/métodos , Engenharia Biomédica/tendências , Sistemas de Manutenção da Vida/instrumentação , Modelos Cardiovasculares , Adolescente , Procedimentos Cirúrgicos Cardíacos/instrumentação , Procedimentos Cirúrgicos Cardíacos/métodos , Procedimentos Cirúrgicos Cardíacos/tendências , Criança , Pré-Escolar , Humanos , Imageamento Tridimensional/métodos , Imageamento Tridimensional/tendências , Lactente , Software/tendências
7.
Interact Cardiovasc Thorac Surg ; 10(5): 679-84, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20123892

RESUMO

Fontan connection with intermittent compression by wrapped latissimus dorsi (LD) was tested in vivo, in vitro and by means of computational fluid dynamics (CFD). Experimental study: LD was conditioned in four pigs for three weeks before Fontan connection by valved conduit wrapped with LD. Mock circuit: Inflatable cuff wrapped around valved conduit provided intermittent external compression, with pressure and flow measured at driving pressure of 8 or 16 mmHg. CFD study: A circuit was tested for possible increase above basal flow (4 l/min) with intermittent external compression. Experimental study: Intermittent conduit compression by LD provided mean 7% decrease of baseline PA pressure, with simultaneous flow increase of 2%. Mock circuit: By raising the driving pressure from 8 to 16 mmHg, the flow increased with baseline PVR (56%) and with elevated PVR (80%). Total pulmonary flow was reduced during intermittent external compression with both baseline and elevated PVR. CFD study: Compression with 13.0 mmHg provided 4.9% increase of total pulmonary flow with substantial increase of the peak flow (92%). In vivo and in vitro, the increased flow produced by compressing a conduit was confounded by the inevitable intermittent flow restriction. Mathematical model using lower pressure for intermittent external compression showed potential for increase in pulmonary flow.


Assuntos
Técnica de Fontan , Coração Auxiliar , Hemodinâmica , Modelos Cardiovasculares , Circulação Pulmonar/fisiologia , Animais , Pressão Venosa Central , Simulação por Computador , Eletrodos Implantados , Técnica de Fontan/efeitos adversos , Técnica de Fontan/métodos , Hemodinâmica/fisiologia , Técnicas In Vitro , Modelos Animais , Músculos Peitorais/cirurgia , Projetos Piloto , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA