Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 19(1): 256-277, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35491858

RESUMO

Following acute kidney injury (AKI), renal tubular cells may stimulate fibroblasts in a paracrine fashion leading to interstitial fibrosis, but the paracrine factors and their regulation under this condition remain elusive. Here we identify a macroautophagy/autophagy-dependent FGF2 (fibroblast growth factor 2) production in tubular cells. Upon induction, FGF2 acts as a key paracrine factor to activate fibroblasts for renal fibrosis. After ischemic AKI in mice, autophagy activation persisted for weeks in renal tubular cells. In inducible, renal tubule-specific atg7 (autophagy related 7) knockout (iRT-atg7-KO) mice, autophagy deficiency induced after AKI suppressed the pro-fibrotic phenotype in tubular cells and reduced fibrosis. Among the major cytokines, tubular autophagy deficiency in iRT-atg7-KO mice specifically diminished FGF2. Autophagy inhibition also attenuated FGF2 expression in TGFB1/TGF-ß1 (transforming growth factor, beta 1)-treated renal tubular cells. Consistent with a paracrine action, the culture medium of TGFB1-treated tubular cells stimulated renal fibroblasts, and this effect was suppressed by FGF2 neutralizing antibody and also by fgf2- or atg7-deletion in tubular cells. In human, compared with non-AKI, the renal biopsies from post-AKI patients had higher levels of autophagy and FGF2 in tubular cells, which showed significant correlations with renal fibrosis. These results indicate that persistent autophagy after AKI induces pro-fibrotic phenotype transformation in tubular cells leading to the expression and secretion of FGF2, which activates fibroblasts for renal fibrosis during maladaptive kidney repair.Abbreviations: 3-MA: 3-methyladnine; ACTA2/α-SMA: actin alpha 2, smooth muscle, aorta; ACTB/ß-actin: actin, beta; AKI: acute kidney injury; ATG/Atg: autophagy related; BUN: blood urea nitrogen; CCN2/CTGF: cellular communication network factor 2; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; CKD: chronic kidney disease; CM: conditioned medium; COL1A1: collagen, type I, alpha 1; COL4A1: collagen, type IV, alpha 1; CQ: chloroquine; ECM: extracellular matrix; eGFR: estimated glomerular filtration rate; ELISA: enzyme-linked immunosorbent assay; FGF2: fibroblast growth factor 2; FN1: fibronectin 1; FOXO3: forkhead box O3; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HAVCR1/KIM-1: hepatitis A virus cellular receptor 1; IHC: immunohistochemistry; IRI: ischemia-reperfusion injury; ISH: in situ hybridization; LTL: lotus tetragonolobus lectin; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PDGFB: platelet derived growth factor, B polypeptide; PPIB/cyclophilin B: peptidylprolyl isomerase B; RT-qPCR: real time-quantitative PCR; SA-GLB1/ß-gal: senescence-associated galactosidase, beta 1; SASP: senescence-associated secretory phenotype; sCr: serum creatinine; SQSTM1/p62: sequestosome 1; TASCC: TOR-autophagy spatial coupling compartment; TGFB1/TGF-ß1: transforming growth factor, beta 1; VIM: vimentin.


Assuntos
Injúria Renal Aguda , Fator de Crescimento Transformador beta1 , Animais , Humanos , Camundongos , Injúria Renal Aguda/metabolismo , Autofagia/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fibroblastos , Fibrose , Rim/patologia , Fator de Crescimento Transformador beta1/metabolismo
2.
Am J Physiol Renal Physiol ; 320(3): F359-F374, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33427061

RESUMO

Lysophosphatidic acid (LPA) increases platelet-derived growth factor-B (PDGFB) and connective tissue growth factor (CTGF) production and secretion by proximal tubule (PT) cells through LPA2 receptor-Gqα-αvß6-integrin-mediated activation of transforming growth factor-ß1 (TGFB1). LPA2, ß6-integrin, PDGFB, and CTGF increase in kidneys after ischemia-reperfusion injury (IRI), coinciding with fibrosis. The TGFB1 receptor antagonist SD-208 prevents increases of ß6-integrin, TGFB1-SMAD signaling, and PDGFB/CTGF expression after IRI and ameliorates fibrosis (Geng H, Lan R, Singha PK, Gilchrist A, Weinreb PH, Violette SM, Weinberg JM, Saikumar P, Venkatachalam MA. Am J Pathol 181: 1236-1249, 2012; Geng H, Lan R, Wang G, Siddiqi AR, Naski MC, Brooks AI, Barnes JL, Saikumar P, Weinberg JM, Venkatachalam MA. Am J Pathol 174: 1291-1308, 2009). We report now that LPA1 receptor signaling through epidermal growth factor receptor (EGFR)-ERK1/2-activator protein-1 cooperates with LPA2-dependent TGFB1 signaling to additively increase PDGFB/CTGF production and secretion by PT cells. Conversely, inhibition of both pathways results in greater suppression of PDGFB/CTGF production and secretion and promotes greater PT cellular differentiation than inhibiting one pathway alone. Antagonism of the LPA-generating enzyme autotaxin suppressed signaling through both pathways. After IRI, kidneys showed not only more LPA2, nuclear SMAD2/3, and PDGFB/CTGF but also increased LPA1 and autotaxin proteins, together with enhanced EGFR/ERK1/2 activation. Remarkably, the TGFB1 receptor antagonist SD-208 prevented all of these abnormalities excepting increased LPA2. SD-208 inhibits only one arm of LPA signaling: LPA2-Gqα-αvß6-integrin-dependent production of active TGFB1 and its receptor-bound downstream effects. Consequently, far-reaching protection by SD-208 against IRI-induced signaling alterations and tubule-interstitial pathology is not fully explained by our data. TGFB1-dependent feedforward modulation of LPA1 signaling is one possibility. SD-208 effects may also involve mitigation of injury caused by IRI-induced TGFB1 signaling in endothelial cells and monocytes. Our results have translational implications for using TGFB1 receptor antagonists, LPA1 and LPA2 inhibitors concurrently, and autotaxin inhibitors in acute kidney injury to prevent the development of chronic kidney disease.


Assuntos
Injúria Renal Aguda/metabolismo , Citocinas/metabolismo , Túbulos Renais Proximais/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Animais , Linhagem Celular , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Modelos Animais de Doenças , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrose , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Túbulos Renais Proximais/patologia , Linfocinas/metabolismo , Masculino , Camundongos , Fosforilação , Fator de Crescimento Derivado de Plaquetas/metabolismo , Ratos Sprague-Dawley , Receptores de Ácidos Lisofosfatídicos/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
3.
Am J Physiol Renal Physiol ; 318(5): F1086-F1099, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32174143

RESUMO

Unilateral ischemia-reperfusion (UIR) injury leads to progressive renal atrophy and tubulointerstitial fibrosis (TIF) and is commonly used to investigate the pathogenesis of the acute kidney injury-chronic kidney disease transition. Although it is well known that contralateral nephrectomy (CNX), even 2 wk post-UIR injury, can improve recovery, the physiological mechanisms and tubular signaling pathways mediating such improved recovery remain poorly defined. Here, we examined the renal hemodynamic and tubular signaling pathways associated with UIR injury and its reversal by CNX. Male Sprague-Dawley rats underwent left UIR or sham UIR and 2 wk later CNX or sham CNX. Blood pressure, left renal blood flow (RBF), and total glomerular filtration rate were assessed in conscious rats for 3 days before and over 2 wk after CNX or sham CNX. In the presence of a contralateral uninjured kidney, left RBF was lower (P < 0.05) from 2 to 4 wk following UIR (3.6 ± 0.3 mL/min) versus sham UIR (9.6 ± 0.3 mL/min). Without CNX, extensive renal atrophy, TIF, and tubule dedifferentiation, but minimal pimonidazole and hypoxia-inducible factor-1α positivity in tubules, were present at 4 wk post-UIR injury. Conversely, CNX led (P < 0.05) to sustained increases in left RBF (6.2 ± 0.6 mL/min) that preceded the increases in glomerular filtration rate. The CNX-induced improvement in renal function was associated with renal hypertrophy, more redifferentiated tubules, less TIF, and robust pimonidazole and hypoxia-inducible factor-1α staining in UIR injured kidneys. Thus, contrary to expectations, indexes of hypoxia are not observed with the extensive TIF at 4 wk post-UIR injury in the absence of CNX but are rather associated with the improved recovery of renal function and structure following CNX.


Assuntos
Injúria Renal Aguda/fisiopatologia , Rim/irrigação sanguínea , Circulação Renal , Insuficiência Renal Crônica/etiologia , Traumatismo por Reperfusão/fisiopatologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Animais , Atrofia , Hipóxia Celular , Modelos Animais de Doenças , Progressão da Doença , Fibrose , Hemodinâmica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Nefrectomia , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Genes Cancer ; 10(5-6): 134-149, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798766

RESUMO

Screening of several TNBC cell lines showed altered Smad2 and Smad3 protein levels compared to normal mammary epithelial cells, suggesting the possibility that it could play an important role in the escape of cancer cells from TGF-ß mediated growth inhibition. To assess the functional relevance of these endogenous molecules, Smad2 or Smad3 expression was knocked down individually and assessed their effects on pro-oncogenic properties of TGF-ß. Smad3 deficiency reduced growth and invasion capacity of breast cancer cells in comparison to Smad2 which had no effect. Smad3 deficiency was also found to be associated with a reduction in the expressions of TMEPAI/PMEPA1 and EMT inducing transcription factors, E-Cadherin and increased expression of cell cycle inhibitors and Vimentin. On the other hand, Smad2 deficiency had opposite effect on these regulators. Interestingly, the decreased growth, invasion and associated gene expressions were largely reversed by overexpressing TMEPAI in Smad3 knockdown cells, suggesting that Smad3-TMEPAI axis may be involved in subverting growth suppressive effects of TGF-ß into growth promotion. Similarly, altered levels of Smad proteins and TMEPAI were also noted in primary TNBC tumor tissues. Analysis of the existing databases provided additional support in terms of TMEPAI and Smad2 expression impacting the survival of TNBC patients. Taken together, our data demonstrate a novel role for Smad3 in cancer transformation and cancer progression through TMEPAI and further suggest that selective targeting of TGF-ß-Smad3-TMEPAI axis may be beneficial in triple negative breast cancer therapy and prevention.

5.
Kidney Int ; 92(5): 1071-1083, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28890325

RESUMO

Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected. Although AKI-to-CKD transition has been intensively studied, the information of AKI on CKD is very limited. Nonetheless, AKI, when occurring in patients with CKD, is known to be more severe and difficult to recover. CKD is associated with significant changes in cell signaling in kidney tissues, including the activation of transforming growth factor-ß, p53, hypoxia-inducible factor, and major developmental pathways. At the cellular level, CKD is characterized by mitochondrial dysfunction, oxidative stress, and aberrant autophagy. At the tissue level, CKD is characterized by chronic inflammation and vascular dysfunction. These pathologic changes may contribute to the heightened sensitivity of, and nonrecovery from, AKI in patients with CKD.


Assuntos
Injúria Renal Aguda/patologia , Autofagia , Inflamação/patologia , Mitocôndrias/patologia , Insuficiência Renal Crônica/patologia , Injúria Renal Aguda/etiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Metilação de DNA , Epigênese Genética , Humanos , Rim/irrigação sanguínea , Rim/patologia , Mitocôndrias/metabolismo , Estresse Oxidativo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/genética , Fatores de Risco , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor p53/metabolismo
7.
BJU Int ; 117(5): 766-74, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26053785

RESUMO

OBJECTIVE: To assess the 1-year renal functional changes in patients undergoing partial nephrectomy with intra-operative renal biopsies. PATIENTS AND METHODS: A total of 40 patients with a single renal mass deemed fit for a partial nephrectomy were recruited prospectively between January 2009 and October 2010. We performed renal biopsies of normal renal parenchyma and collected serum markers before, during and after surgically induced renal clamp ischaemia during the partial nephrectomy. We then followed patients clinically with interval serum creatinine and physical examination. RESULTS: Peri-operative data from 40 patients showed a transient increase in creatinine levels which did not correlate with ischaemia time. Renal ultrastructural changes were generally mild and included mitochondrial swelling, which resolved at the post-perfusion biopsy. A total of 37 patients had 1-year follow-up data. Creatinine at 1 year increased by 0.121 mg/dL, which represents a 12.99% decrease in renal function from baseline (preoperative creatinine 0.823 mg/dL, estimated glomerular filtration rate = 93.9 mL/min/1.73 m(2) ). The only factors predicting creatinine change on multivariate analysis were patient age, race and ischaemia type, with cold ischaemia being associated with higher creatinine level. Importantly, the duration of ischaemia did not show any significant correlation with renal function change, either as a continuous variable (P = 0.452) or as a categorical variable (P = 0.792). CONCLUSIONS: Our data suggest that limited ischaemia is generally well tolerated in the setting of partial nephrectomy and does not directly correspond to long-term renal functional decline. For surgeons performing partial nephrectomy, the kidney can be safely clamped to ensure optimum oncological outcomes.


Assuntos
Isquemia Fria , Neoplasias Renais/cirurgia , Rim/fisiologia , Nefrectomia/métodos , Isquemia Quente , Adulto , Idoso , Idoso de 80 Anos ou mais , Isquemia Fria/efeitos adversos , Constrição , Creatinina/sangue , Progressão da Doença , Feminino , Seguimentos , Taxa de Filtração Glomerular , Humanos , Rim/irrigação sanguínea , Rim/ultraestrutura , Neoplasias Renais/fisiopatologia , Masculino , Pessoa de Meia-Idade , Nefrectomia/efeitos adversos , Estudos Prospectivos , Artéria Renal , Insuficiência Renal Crônica/classificação , Insuficiência Renal Crônica/etiologia , Fatores de Tempo , Isquemia Quente/efeitos adversos
8.
Genes Cancer ; 5(9-10): 320-36, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25352949

RESUMO

TMEPAI (transmembrane prostate androgen-induced) is amplified at genomic, transcript and protein levels in triple-negative breast cancers and promotes TGF-ß dependent growth, motility and invasion. Tumor promotion by TMEPAI depends on two different but related actions on TGF-ß signaling. Firstly, TMEPAI binds and sequesters regulatory Smads2/3 and thereby decreases growth suppressive signaling by TGF-ß. Secondly, increased expression of TMEPAI decreases PTEN (phosphatase and tensin homolog) abundance, and thereby increases TGF-ß dependent tumor promotive PI3K/Akt signaling. These actions of TMEPAI give rise to increased cell proliferation and motility. Moreover, signaling alterations produced by high TMEPAI were associated with oncogenic Snail expression and lung metastases. Finally, an inverse correlation between TMEPAI and PTEN levels was confirmed in triple negative breast cancer tumor samples. Together, our findings suggest that TMEPAI has dually critical roles to promote TGF-ß dependent cancer cell growth and metastasis. Thus, redirected TGF-ß signaling through TMEPAI may play a pivotal role in TGF-ß mediated tumor promotion.

9.
Hypertension ; 64(4): 801-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24958497

RESUMO

Most patients with essential hypertension do not exhibit substantial renal damage. Renal autoregulation by preventing glomerular transmission of systemic pressures has been postulated to mediate this resistance. Conversely, malignant nephrosclerosis (MN) has been postulated to develop when severe hypertension exceeds a critical ceiling. If the concept is valid, even modest blood pressure (BP) reductions to below this threshold regardless of antihypertensive class (1) should prevent MN and (2) lead to the healing of the already developed MN lesions. Both predicates were tested using BP radiotelemetry in the stroke-prone spontaneously hypertensive rats receiving 1% NaCl as drinking fluid for 4 weeks. Severe hypertension (final 2 weeks average systolic BP, >200 mm Hg) and MN (histological damage score 36±5; n=27) developed in the untreated stroke-prone spontaneously hypertensive rats but were prevented by all antihypertensive classes (enalapril [n=15], amlodipine [n=13], or a hydralazine/hydrochlorothiazide combination [n=15]) if the final 2-week systolic BP remained <190 mm Hg. More impressively, modest systolic BP reductions to 160 to 180 mm Hg (hydralazine/hydrochlorothiazide regimen) initiated at ≈4 weeks in additional untreated rats after MN had already developed (injury score 35±4 in the right kidney removed before therapy) led to a striking resolution of the vascular and glomerular MN injury over 2 to 3 weeks (post-therapy left kidney injury score 9±2, P<0.0001; n=27). Proteinuria also declined rapidly from 122±9.5 mg/24 hours before therapy to 20.5±3.6 mg 1 week later. These data clearly demonstrate the barotrauma-mediated pathogenesis of MN and the striking capacity for spontaneous and rapid repair of hypertensive kidney damage if new injury is prevented.


Assuntos
Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Nefroesclerose/fisiopatologia , Anlodipino/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Quimioterapia Combinada , Enalapril/farmacologia , Humanos , Hidralazina/farmacologia , Hidroclorotiazida/farmacologia , Hipertensão/prevenção & controle , Masculino , Nefroesclerose/prevenção & controle , Ratos , Ratos Endogâmicos SHR , Valores de Referência , Resultado do Tratamento
10.
Kidney Int ; 84(1): 11-4, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23812359

RESUMO

Shen et al. exploit glycobiology to dampen transforming growth factor-ß (TGF-ß) signaling and ameliorate renal fibrosis after ureteral obstruction. Core fucosylation of N-linked oligosaccharides in TGF-ß receptors is required for receptor function. Adenoviruses expressing Fut8-fucosyl transferase-shRNA inhibited receptor fucosylation, decreased tubule TGF-ß signaling, and reduced fibrosis. Fut8-shRNA interferes with core fucosylation of other receptors also. Regardless, this first attempt to capitalize on a new aspect of TGF-ß receptor function provides a basis for further research.


Assuntos
Fucose/metabolismo , Fucosiltransferases/metabolismo , Nefropatias/prevenção & controle , Rim/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Humanos , Masculino
11.
Kidney Int ; 84(1): 16-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23812361

RESUMO

Kim et al. show that isoflurane uses a tubule-based transforming growth factor-ß/CD73-dependent process that generates adenosine to protect mice from ischemic acute kidney injury (AKI) with effects to prevent the 'no-reflow phenomenon' and decrease inflammation. While direct cytoprotection occurred in culture, extensive research suggests that in vivo adenosine protection from rodent ischemic AKI is mediated by a mutually cooperative mechanism involving blood flow, inflammation, and innate immunity through multiple adenosine receptors with promiscuous actions on diverse cell types.


Assuntos
5'-Nucleotidase/biossíntese , Injúria Renal Aguda/prevenção & controle , Anestésicos Inalatórios/farmacologia , Isoflurano/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Traumatismo por Reperfusão/prevenção & controle , Animais , Proteínas Ligadas por GPI/biossíntese , Humanos , Masculino
12.
J Am Soc Nephrol ; 24(3): 506-17, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23411786

RESUMO

Tolerance of the human kidney to ischemia is controversial. Here, we prospectively studied the renal response to clamp ischemia and reperfusion in humans, including changes in putative biomarkers of AKI. We performed renal biopsies before, during, and after surgically induced renal clamp ischemia in 40 patients undergoing partial nephrectomy. Ischemia duration was >30 minutes in 82.5% of patients. There was a mild, transient increase in serum creatinine, but serum cystatin C remained stable. Renal functional changes did not correlate with ischemia duration. Renal structural changes were much less severe than observed in animal models that used similar durations of ischemia. Other biomarkers were only mildly elevated and did not correlate with renal function or ischemia duration. In summary, these data suggest that human kidneys can safely tolerate 30-60 minutes of controlled clamp ischemia with only mild structural changes and no acute functional loss.


Assuntos
Isquemia/fisiopatologia , Rim/irrigação sanguínea , Rim/fisiopatologia , Nefrectomia/métodos , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Injúria Renal Aguda/prevenção & controle , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Creatinina/sangue , Cistatina C/sangue , Feminino , Humanos , Isquemia/patologia , Rim/patologia , Masculino , Pessoa de Meia-Idade , Nefrectomia/efeitos adversos , Estudos Prospectivos , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Traumatismo por Reperfusão/prevenção & controle , Fatores de Tempo
13.
Am J Pathol ; 181(4): 1236-49, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22885106

RESUMO

After ischemia-reperfusion injury (IRI), kidney tubules show activated transforming growth factor ß (TGF-ß) signaling and increased expression of profibrotic peptides, platelet-derived growth factor-B (PDGF-B) and connective tissue growth factor (CTGF). If tubule repair after IRI is incomplete, sustained paracrine activity of these peptides can activate interstitial fibroblast progenitors and cause fibrosis. We show that lysophosphatidic acid (LPA), a ubiquitous phospholipid that is increased at sites of injury and inflammation, signals through LPA2 receptors and Gαq proteins of cultured proximal tubule cells to transactivate latent TGF-ß in a Rho/Rho-kinase and αvß6 integrin-dependent manner. Active TGF-ß peptide then initiates signaling to increase the production and secretion of PDGF-B and CTGF. In a rat model of IRI, increased TGF-ß signaling that was initiated early during reperfusion did not subside during recovery, but progressively increased, causing tubulointerstitial fibrosis. This was accompanied by correspondingly increased LPA2 and ß6 integrin proteins and elevated tubule expression of TGF-ß1, together with PDGF-B and CTGF. Treatment with a pharmacological TGF-ß type I receptor antagonist suppressed TGF-ß signaling, decreased the expression of ß6 integrin, PDGF-B, and CTGF, and ameliorated fibrosis. We suggest that LPA-initiated autocrine signaling is a potentially important mechanism that gives rise to paracrine profibrotic signaling in injured kidney tubule cells.


Assuntos
Antígenos de Neoplasias/metabolismo , Citocinas/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Integrinas/metabolismo , Túbulos Renais Proximais/metabolismo , Lisofosfolipídeos/farmacologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Citocinas/genética , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , Lipídeos/sangue , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Regeneração/efeitos dos fármacos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta/metabolismo
14.
Am J Physiol Renal Physiol ; 302(9): F1210-23, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22301622

RESUMO

We investigated the signaling basis for tubule pathology during fibrosis after renal injury. Numerous signaling pathways are activated physiologically to direct tubule regeneration after acute kidney injury (AKI) but several persist pathologically after repair. Among these, transforming growth factor (TGF)-ß is particularly important because it controls epithelial differentiation and profibrotic cytokine production. We found that increased TGF-ß signaling after AKI is accompanied by PTEN loss from proximal tubules (PT). With time, subpopulations of regenerating PT with persistent loss of PTEN (phosphate and tension homolog) failed to differentiate, became growth arrested, expressed vimentin, displayed profibrotic JNK activation, and produced PDGF-B. These tubules were surrounded by fibrosis. In contrast, PTEN recovery was associated with epithelial differentiation, normal tubule repair, and less fibrosis. This beneficial outcome was promoted by TGF-ß antagonism. Tubule-specific induction of TGF-ß led to PTEN loss, JNK activation, and fibrosis even without prior AKI. In PT culture, high TGF-ß depleted PTEN, inhibited differentiation, and activated JNK. Conversely, TGF-ß antagonism increased PTEN, promoted differentiation, and decreased JNK activity. Cre-Lox PTEN deletion suppressed differentiation, induced growth arrest, and activated JNK. The low-PTEN state with JNK signaling and fibrosis was ameliorated by contralateral nephrectomy done 2 wk after unilateral ischemia, suggesting reversibility of the low-PTEN dysfunctional tubule phenotype. Vimentin-expressing tubules with low-PTEN and JNK activation were associated with fibrosis also after tubule-selective AKI, and with human chronic kidney diseases of diverse etiology. By preventing tubule differentiation, the low-PTEN state may provide a platform for signals initiated physiologically to persist pathologically and cause fibrosis after injury.


Assuntos
Diferenciação Celular , Túbulos Renais Proximais/patologia , MAP Quinase Quinase 4/fisiologia , PTEN Fosfo-Hidrolase/deficiência , Fenótipo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Animais , Células Cultivadas , Doença Crônica , Fibrose , Humanos , Nefropatias/patologia , Nefropatias/fisiopatologia , Túbulos Renais Proximais/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Ratos , Ratos Sprague-Dawley , Regeneração/fisiologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia
15.
J Clin Invest ; 122(2): 493-6, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22269321

RESUMO

Several adenosine receptor subtypes on endothelial, epithelial, mesangial, and inflammatory cells have been implicated in ischemic acute kidney injury, a life-threatening condition that frequently complicates the care of hospitalized patients. In this issue of the JCI, Grenz and coworkers provide novel insight into how preservation of postischemic renal perfusion by endothelial cell adenosine A2B receptors is antagonized by adenosine reuptake into proximal tubule cells by equilibrative nucleotide transporter 1, which can be inhibited by dipyridamole. The work suggests that adenosine A2B receptor agonists and inhibition of equilibrative nucleoside transporters by dipyridamole may have therapeutic potential in ischemic acute kidney injury, a condition for which there are currently no specific therapeutic interventions.


Assuntos
Injúria Renal Aguda/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Isquemia/metabolismo , Fluxo Sanguíneo Regional/fisiologia , Animais , Humanos
16.
Cancer Res ; 70(15): 6377-83, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20610632

RESUMO

TMEPAI is a transforming growth factor-beta (TGF-beta)-induced transmembrane protein that is overexpressed in several cancers. How TMEPAI expression relates to malignancy is unknown. Here, we report high expression of TMEPAI in estrogen receptor/progesterone receptor-negative and human epidermal growth factor receptor-2-negative breast cancer cell lines and primary breast cancers that was further increased by TGF-beta treatment. Basal and TGF-beta-induced expression of TMEPAI were inhibited by the TGF-beta receptor antagonist SB431542 and overexpression of Smad7 or a dominant-negative mutant of Alk-5. TMEPAI knockdown attenuated TGF-beta-induced growth and motility in breast cancer cells, suggesting a role for TMEPAI in growth promotion and invasiveness. Further, TMEPAI knockdown decreased breast tumor mass in a mouse xenograft model in a manner associated with increased expression of phosphatase and tensin homologue (PTEN) and diminished phosphorylation of Akt. Consistent with the effects through the phosphatidylinositol 3-kinase pathway, tumors with TMEPAI knockdown exhibited elevated levels of the cell cycle inhibitor p27kip1 and attenuated levels of DNA replication and expression of hypoxia-inducible fator 1alpha and vascular endothelial growth factor. Together, these results suggest that TMEPAI functions in breast cancer as a molecular switch that converts TGF-beta from a tumor suppressor to a tumor promoter.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Proteínas de Membrana/biossíntese , Fator de Crescimento Transformador beta/farmacologia , Animais , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Processos de Crescimento Celular/genética , Movimento Celular/genética , Feminino , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Nus , RNA Interferente Pequeno/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
17.
Biochem Biophys Res Commun ; 395(1): 17-24, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20307494

RESUMO

Arachidonic acid derived endogenous electrophile 15d-PGJ2 has gained much attention in recent years due to its potent anti-proliferative and anti-inflammatory actions mediated through thiol modification of cysteine residues in its target proteins. Here, we show that 15d-PGJ2 at 1 microM concentration converts normal mitochondria into large elongated and interconnected mitochondria through direct binding to mitochondrial fission protein Drp1 and partial inhibition of its GTPase activity. Mitochondrial elongation induced by 15d-PGJ2 is accompanied by increased assembly of Drp1 into large oligomeric complexes through plausible intermolecular interactions. The role of decreased GTPase activity of Drp1 in the formation of large oligomeric complexes is evident when Drp1 is incubated with a non-cleavable GTP analog, GTPgammaS or by a mutation that inactivated GTPase activity of Drp1 (K38A). The mutation of cysteine residue (Cys644) in the GTPase effector domain, a reported target for modification by reactive electrophiles, to alanine mimicked K38A mutation induced Drp1 oligomerization and mitochondrial elongation, suggesting the importance of cysteine in GED to regulate the GTPase activity and mitochondrial morphology. Interestingly, treatment of K38A and C644A mutants with 15d-PGJ2 resulted in super oligomerization of both mutant Drp1s indicating that 15d-PGJ2 may further stabilize Drp1 oligomers formed by loss of GTPase activity through covalent modification of middle domain cysteine residues. The present study documents for the first time the regulation of a mitochondrial fission activity by a prostaglandin, which will provide clues for understanding the pathological and physiological consequences of accumulation of reactive electrophiles during oxidative stress, inflammation and degeneration.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Prostaglandina D2/análogos & derivados , Animais , Linhagem Celular , Cisteína/genética , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/genética , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/fisiologia , Proteínas Mitocondriais/genética , Mutação , Prostaglandina D2/farmacologia , Estrutura Terciária de Proteína/genética , Ratos
18.
Semin Nephrol ; 23(6): 511-21, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14631559

RESUMO

Cell death by hypoxia/ischemia may occur by apoptosis as well as necrosis in experimental models of renal injury both in vivo and in vitro. Necrosis can occur during hypoxia/ischemia as a result of widespread cellular degradation, and during reoxygenation/reperfusion as a consequence of the development of the mitochondrial permeability transition pore (PTP). In vitro models of hypoxia/reoxygenation suggest that apoptotic cell death may occur during reoxygenation as a consequence of mitochondrial release of cytochrome c (Cyt c) during hypoxia. In hypoxic renal cells, Bax and Bak, 2 pro-apoptotic proteins of the Bcl-2 family, collaborate to permeabilize the mitochondrial outer membrane to intermembrane proteins such as Cyt c, although Bax, per se, appears to play the dominant role. Cyt c then acts to trigger the downstream apoptotic cascade. Caspase inhibitors suppress these downstream events, but not Cyt c release. However, the anti-apoptotic Bcl-2 prevents mitochondrial permeabilization and maintains viability. Inflammation is known to play a major role in exacerbating parenchymal damage during reperfusion. Recent studies suggest that the apoptosis-related mechanisms contribute to the inflammatory process. By inhibiting tubular cell apoptosis, by suppressing an apoptotic chain reaction in accumulating inflammatory cells, and by inhibiting caspase-1 processing in injured tissue, caspase inhibitors may reduce inflammation, and thereby reduce the cascading parenchymal injury that is associated with inflammation.


Assuntos
Apoptose/fisiologia , Isquemia/patologia , Nefropatias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Caspases/metabolismo , Hipóxia Celular , Modelos Animais de Doenças , Ativação Enzimática , Humanos , Membranas Intracelulares/fisiologia , Isquemia/fisiopatologia , Nefropatias/fisiopatologia , Translocases Mitocondriais de ADP e ATP/metabolismo , Necrose , Ratos , Traumatismo por Reperfusão/patologia , Sensibilidade e Especificidade
19.
Am J Pathol ; 163(2): 663-71, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12875985

RESUMO

Hypoxia is an important pathogenic factor in ischemic disease and tumorigenesis. Under hypoxia, some cells are irreversibly damaged, whereas others adapt to the stress and may become more resistant to injury. The mechanism underlying such adaptive responses is unclear. Our recent study showed hypoxic induction of inhibitor of apoptosis protein-2 (IAP-2). Here we have investigated the critical steps in the apoptotic cascade that are affected by hypoxia and have identified a role for IAP-2 in apoptosis resistance of hypoxic cells. The results show that cells cultured in hypoxia became resistant to staurosporine-induced apoptosis. Apoptosis resistance of these cells took place at the mitochondria and in the cytosol. At the mitochondrial level, membrane accumulation of the proapoptotic molecule Bax was suppressed. This was accompanied by less cytochrome c (cyt. c) release from the organelles. In the cytosol, hypoxia induced IAP-2; the cytosol with IAP-2 was resistant to cyt. c-stimulated caspase activation. Of significance, immunodepletion of IAP-2 from the hypoxic cytosol restored its competence for caspase activation. Thus, death resistance of hypoxic cells involves multiple factors targeting different stages of apoptosis, with IAP-2 suppressing caspases in the cytosol.


Assuntos
Apoptose , Hipóxia Celular/fisiologia , Inibidores de Cisteína Proteinase/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Virais/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Caspases/metabolismo , Fracionamento Celular , Linhagem Celular , Grupo dos Citocromos c/metabolismo , Citoplasma/metabolismo , Ativação Enzimática , Glucose/metabolismo , Proteínas Inibidoras de Apoptose , Túbulos Renais/citologia , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Estaurosporina/metabolismo , Proteína X Associada a bcl-2
20.
Neurochem Res ; 28(6): 893-901, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12718443

RESUMO

A distinctive mechanism of cell injury during ATP depletion involves the loss of cellular glycine. The current study examined whether provision of glycine during ATP depletion can prevent injury in PC-12 cells, a cell line with neuronal property. In addition, we have examined the role played by glycine receptors in cytoprotective effects of the amino acid. It was shown that ATP depletion led to plasma membrane damage in PC-12 cells, which was ameliorated by 0.25-5 mM glycine. Cytoprotective activity of glycine was shared by alanine, but not by glutamate or gamma-aminobutyric acid (GABA). Of interest, strychnine, an antagonist of glycine receptor, was also protective. The results, while suggesting the involvement of glycine receptor in cytoprotection, indicate that chloride channel activity of the receptor is dispensable. Such a scenario is further supported by the observation that removal of extracellular chloride did not affect ATP depletion-induced cell injury or its prevention by glycine. In short, this study has provided the first evidence for glycine protection of cells with neuronal properties. Cytoprotection may involve the glycine receptor; however, it can be dissociated from its channel activity.


Assuntos
Trifosfato de Adenosina/metabolismo , Glicina/farmacologia , Neurônios/citologia , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Cinética , L-Lactato Desidrogenase/análise , Neurônios/efeitos dos fármacos , Células PC12 , Ratos , Desacopladores/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA