Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Res (Camb) ; 11(2): 311-324, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35510231

RESUMO

Deuteration is a chemical modification strategy that has recently gained traction in drug development. The replacement of one or more hydrogen atom(s) in a drug molecule with its heavier stable isotope deuterium can enhance its metabolic stability and pharmacokinetic properties. However, it remains uninterrogated if rational deuteration at bioactivation "hot-spots" could attenuate its associated toxicological consequences. Here, our preliminary screening with benzofuran antiarrhythmic agents first revealed that dronedarone and its major metabolite N-desbutyldronedarone elicited a greater loss of viability and cytotoxicity in human hepatoma G2 (HepG2) cells as compared with amiodarone and its corresponding metabolite N-desethylamiodarone. A comparison of dronedarone and its in-house synthesized deuterated analogue (termed poyendarone) demonstrated that deuteration could attenuate its in vitro toxicity in HepG2 cells by modulating the extent of mitochondrial dysfunction, reducing the dissipation of mitochondrial membrane potential, and evoking a distinct apoptotic kinetic signature. Furthermore, although pretreatment with the CYP3A inducer rifampicin or the substitution of glucose with galactose in the growth media significantly augmented the loss of cell viability elicited by dronedarone and poyendarone, a lower loss of cell viability was consistently observed in poyendarone across all concentrations. Taken together, our preliminary investigations suggested that the rational deuteration of dronedarone at its benzofuran ring reduces aberrant cytochrome P450 3A4/5-mediated bioactivation, which attenuated its mitochondrial toxicity in human hepatic HepG2 cells.

2.
Inorg Chem ; 59(7): 4527-4535, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32181663

RESUMO

The in-gel detection of proteins for various proteomic experiments is commonly done with the fluorescent RuII tris(bathophenanthroline disulfonate) complex (Ru(BPS)3), which is more cost-effective compared to commercial Ru-based formulations but requires tedious procedures for its preparation and strongly acidic staining conditions. Herein, we report the synthesis and characterization of heteroleptic RuII complexes Ru(BPS)2(BP) and Ru(BPS)(BP)2 containing bathophenanthroline (BP) and bathophenanthroline disulfonate disodium salt (BPS) in comparison with Ru(BPS)3. It was shown by fluorescent and UV-vis measurements that novel RuII complexes were excitable in both UV and visible light, close to emission bands of classical lasers, which is important for successful in-gel protein detection. Novel fluorescent dyes demonstrated improved protein detection in comparison with commercially available SYPRO Ruby staining solution. In addition, unlike commonly used staining protocols, staining with Ru(BPS)(BP)2 can be performed at nearly neutral pH, thereby reducing artificial post-translational modifications (PTMs).


Assuntos
Complexos de Coordenação/química , Corantes Fluorescentes/química , Fenantrolinas/química , Coloração e Rotulagem/métodos , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Eletroforese em Gel de Poliacrilamida/métodos , Corantes Fluorescentes/síntese química , Humanos , Fenantrolinas/síntese química , Proteínas/análise , Proteínas/química , Rutênio/química
3.
Molecules ; 24(20)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614517

RESUMO

Human A3 adenosine receptor hA3AR has been implicated in gastrointestinal cancer, where its cellular expression has been found increased, thus suggesting its potential as a molecular target for novel anticancer compounds. Observation made in our previous work indicated the importance of the carbonyl group of amide in the indolylpyrimidylpiperazine (IPP) for its human A2A adenosine receptor (hA2AAR) subtype binding selectivity over the other AR subtypes. Taking this observation into account, we structurally modified an indolylpyrimidylpiperazine (IPP) scaffold, 1 (a non-selective adenosine receptors' ligand) into a modified IPP (mIPP) scaffold by switching the position of the carbonyl group, resulting in the formation of both ketone and tertiary amine groups in the new scaffold. Results showed that such modification diminished the A2A activity and instead conferred hA3AR agonistic activity. Among the new mIPP derivatives (3-6), compound 4 showed potential as a hA3AR partial agonist, with an Emax of 30% and EC50 of 2.89 ± 0.55 µM. In the cytotoxicity assays, compound 4 also exhibited higher cytotoxicity against both colorectal and liver cancer cells as compared to normal cells. Overall, this new series of compounds provide a promising starting point for further development of potent and selective hA3AR partial agonists for the treatment of gastrointestinal cancers.


Assuntos
Neoplasias Gastrointestinais/tratamento farmacológico , Pirimidinonas/química , Receptor A2A de Adenosina/genética , Receptor A3 de Adenosina/genética , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Células CHO , Proliferação de Células/efeitos dos fármacos , Cricetinae , Cricetulus , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Humanos , Indóis/síntese química , Indóis/química , Indóis/farmacologia , Modelos Moleculares , Piperazina/síntese química , Piperazina/química , Piperazina/farmacologia , Pirimidinonas/síntese química , Pirimidinonas/farmacologia , Receptor A2A de Adenosina/química , Relação Estrutura-Atividade
4.
PLoS One ; 13(1): e0188212, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29304113

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra of the human brain, leading to depletion of dopamine production. Dopamine replacement therapy remains the mainstay for attenuation of PD symptoms. Nonetheless, the potential benefit of current pharmacotherapies is mostly limited by adverse side effects, such as drug-induced dyskinesia, motor fluctuations and psychosis. Non-dopaminergic receptors, such as human A2A adenosine receptors, have emerged as important therapeutic targets in potentiating therapeutic effects and reducing the unwanted side effects. In this study, new chemical entities targeting both human A2A adenosine receptor and dopamine D2 receptor were designed and evaluated. Two computational methods, namely support vector machine (SVM) models and Tanimoto similarity-based clustering analysis, were integrated for the identification of compounds containing indole-piperazine-pyrimidine (IPP) scaffold. Subsequent synthesis and testing resulted in compounds 5 and 6, which acted as human A2A adenosine receptor binders in the radioligand competition assay (Ki = 8.7-11.2 µM) as well as human dopamine D2 receptor binders in the artificial cell membrane assay (EC50 = 22.5-40.2 µM). Moreover, compound 5 showed improvement in movement and mitigation of the loss of dopaminergic neurons in Drosophila models of PD. Furthermore, in vitro toxicity studies on compounds 5 and 6 did not reveal any mutagenicity (up to 100 µM), hepatotoxicity (up to 30 µM) or cardiotoxicity (up to 30 µM).


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Antiparkinsonianos/farmacologia , Agonistas de Dopamina/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/farmacocinética , Inibidores de Adenilil Ciclases/química , Inibidores de Adenilil Ciclases/farmacocinética , Inibidores de Adenilil Ciclases/farmacologia , Animais , Animais Geneticamente Modificados , Antiparkinsonianos/química , Antiparkinsonianos/farmacocinética , Células CHO , Cricetulus , Agonistas de Dopamina/química , Agonistas de Dopamina/farmacocinética , Drosophila/genética , Drosophila/metabolismo , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Piperazinas/química , Piperazinas/farmacocinética , Piperazinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Ensaio Radioligante , Máquina de Vetores de Suporte
5.
Bioorg Med Chem ; 22(5): 1751-65, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24518296

RESUMO

In the present study, a molecular simplification approach was employed to design novel bicyclic pyrazolo[3,4-d]pyrimidine (PP) derivatives from tricyclic pyrazolo[4,3-e]-1,2,4-triazolo-[1,5-c]pyrimidines (PTP) as promising human A3 adenosine receptor (hA3AR) antagonists. All the target compounds were synthesized using novel and efficient synthetic schemes and the structure-activity relationship studies of these PPs were explored through the synthesis of a series of PTP analogues with various substituents. Substituents with different lipophilicity and steric hindrance (e.g., alkyl and aryl-alkyl) functions were introduced at N(2) position of the pyrazole ring, while acyl groups with different electronic properties were introduced at C(6) position of the bicyclic nucleus to probe both electronic and positional effects. Most of the synthesized derivatives of the PP series presented good affinity at the hA3AR, as indicated by the low micromolar range of Ki values and among them, compound 63 with N(2) neopentyl substituents showed most potent hA3AR affinity with Ki value of 0.9 µM and high selectivity (hA1AR/hA3AR=>111 & hA2AAR/hA3AR=>111) towards other adenosine receptor subtypes. Interestingly, small isopropyl groups at N(2) position displayed high affinity at another receptor subtype (hA2AAR, e.g., compound 55, with Ki hA2AAR=0.8 µM), while they were less favorable at the hA3AR. Molecular docking analysis was also performed to predict the possible binding mode of target compounds inside the hA3AR and hA2AAR. Overall, PP derivatives represent promising starting points for new AR antagonists.


Assuntos
Antagonistas de Receptores Purinérgicos P1/química , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
6.
Chemistry ; 19(25): 8321-30, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23613215

RESUMO

Human A3 adenosine receptor (A3AR) is a membrane-bound G protein-coupled receptor implicated in a number of severe pathological conditions, including cancer, in which it acts as a potential therapeutic target. To derive structure-activity relationships on pyrazolo-triazolo-pyrimidine (PTP)-based A3AR antagonists, we developed a new class of organometallic inhibitors through replacement of the triazolo moiety with an organoruthenium fragment. The objective was to introduce by design structural diversity into the PTP scaffold in order to tune their binding efficacy toward the target receptor. These novel organoruthenium antagonists displayed good aquatic stability and moderate binding affinity toward the hA3 receptor in the low micromolar range. The assembly of these complexes through a template-driven approach with selective ligand replacement at the metal center to control their steric and receptor-binding properties is discussed.


Assuntos
Antagonistas do Receptor A3 de Adenosina/síntese química , Antagonistas do Receptor A3 de Adenosina/farmacologia , Receptor A3 de Adenosina/metabolismo , Compostos de Rutênio/síntese química , Compostos de Rutênio/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Pirimidinas/química , Pirimidinas/farmacologia , Receptor A3 de Adenosina/química , Relação Estrutura-Atividade
7.
Med Res Rev ; 33(2): 235-335, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22095687

RESUMO

Adenosine is an ubiquitous local modulator that regulates various physiological and pathological functions by stimulating four membrane receptors, namely A(1), A(2A), A(2B), and A(3). Among these G protein-coupled receptors, the A(3) subtype is found mainly in the lung, liver, heart, eyes, and brain in our body. It has been associated with cerebroprotection and cardioprotection, as well as modulation of cellular growth upon its selective activation. On the other hand, its inhibition by selective antagonists has been reported to be potentially useful in the treatment of pathological conditions including glaucoma, inflammatory diseases, and cancer. In this review, we focused on the pharmacology and the therapeutic implications of the human (h)A(3) adenosine receptor (AR), together with an overview on the progress of hA(3) AR agonists, antagonists, allosteric modulators, and radioligands, as well as on the recent advances pertaining to the computational approaches (e.g., quantitative structure-activity relationships, homology modeling, molecular docking, and molecular dynamics simulations) applied to the modeling of hA(3) AR and drug design.


Assuntos
Química Farmacêutica/métodos , Terapia de Alvo Molecular/métodos , Agonistas do Receptor Purinérgico P1/farmacologia , Receptor A3 de Adenosina/química , Receptor A3 de Adenosina/efeitos dos fármacos , Animais , Encefalopatias/diagnóstico , Encefalopatias/tratamento farmacológico , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/tratamento farmacológico , Desenho de Fármacos , Humanos , Inflamação/diagnóstico , Inflamação/tratamento farmacológico , Receptor A3 de Adenosina/metabolismo , Sensibilidade e Especificidade , Relação Estrutura-Atividade
8.
Bioorg Med Chem Lett ; 21(10): 2898-905, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21511471

RESUMO

A ligand-based pharmacophore was obtained for a new series of 2-unsubstituted and 2-(para-substituted)phenyl-pyrazolo-triazolo-pyrimidines as potent human A(3) adenosine receptor antagonists. Through comparative molecular field analysis-based quantitative structure-activity relationship studies, structural features at the N(5)-, N(8)- and C(2)-positions of the tricyclic nucleus were deeply investigated, with emphasis given to the unprecedentedly explored C(2)-position. The resulting model showed good correlation and predictability (r(2)=0.936; q(2)=0.703; r(pred)(2)=0.663). Overall, the contribution of steric effect was found relatively more predominant for the optimal interaction of these antagonists to the human A(3) receptor.


Assuntos
Antagonistas do Receptor A3 de Adenosina , Pirazóis/química , Pirimidinas , Triazóis/química , Antagonistas do Receptor A3 de Adenosina/química , Antagonistas do Receptor A3 de Adenosina/farmacologia , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Relação Quantitativa Estrutura-Atividade
9.
Int J Med Chem ; 2011: 480652, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-25954519

RESUMO

In the past few decades, medicinal chemistry research towards potent and selective antagonists of human adenosine receptors (namely, A1, A2A, A2B, and A3) has been evolving rapidly. These antagonists are deemed therapeutically beneficial in several pathological conditions including neurological and renal disorders, cancer, inflammation, and glaucoma. Up to this point, many classes of compounds have been successfully synthesized and identified as potent human adenosine receptor antagonists. In this paper, an overview of the structure-activity relationship (SAR) profiles of promising nonxanthine pyrazolo derivatives is reported and discussed. We have emphasized the SAR for some representative structures such as pyrazolo-[4,3-e]-1,2,4-triazolo-[1,5-c]pyrimidines; pyrazolo-[3,4-c] or -[4,3-c]quinolines; pyrazolo-[4,3-d]pyrimidinones; pyrazolo-[3,4-d]pyrimidines and pyrazolo-[1,5-a]pyridines. This overview not only clarifies the structural requirements deemed essential for affinity towards individual adenosine receptor subtypes, but it also sheds light on the rational design and optimization of existing structural templates to allow us to conceive new, more potent adenosine receptor antagonists.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA