Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39066368

RESUMO

Tuberculosis (TB), primarily caused by Mycobacterium tuberculosis (M. tb), remains a widespread fatal health issue that becomes significantly detrimental when coupled with HIV. This study explores the host's innate and adaptive immune system response to TB in HIV immunocompromised patients, highlighting the significant role of CD8+ T cells. While the crucial role of macrophages and cytokines, like TNF-α and IFN-γ, in managing the host's immune response to M. tb is examined, the emphasis is on the changes that occur as a result of HIV coinfection. With the progression of HIV infection, the primary source of IFN-γ changes from CD4+ to CD8+ T cells, especially when latent TB advances to an active state. This study sheds light on the necessity of developing new preventative measures such as vaccines and new treatment approaches to TB, especially for immunocompromised patients, who are at a higher risk of life-threatening complications due to TB-HIV coinfection.

2.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892443

RESUMO

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), a prevalent infectious disease affecting populations worldwide. A classic trait of TB pathology is the formation of granulomas, which wall off the pathogen, via the innate and adaptive immune systems. Some key players involved include tumor necrosis factor-alpha (TNF-α), foamy macrophages, type I interferons (IFNs), and reactive oxygen species, which may also show overlap with cell death pathways. Additionally, host cell death is a primary method for combating and controlling Mtb within the body, a process which is influenced by both host and bacterial factors. These cell death modalities have distinct molecular mechanisms and pathways. Programmed cell death (PCD), encompassing apoptosis and autophagy, typically confers a protective response against Mtb by containing the bacteria within dead macrophages, facilitating their phagocytosis by uninfected or neighboring cells, whereas necrotic cell death benefits the pathogen, leading to the release of bacteria extracellularly. Apoptosis is triggered via intrinsic and extrinsic caspase-dependent pathways as well as caspase-independent pathways. Necrosis is induced via various pathways, including necroptosis, pyroptosis, and ferroptosis. Given the pivotal role of host cell death pathways in host defense against Mtb, therapeutic agents targeting cell death signaling have been investigated for TB treatment. This review provides an overview of the diverse mechanisms underlying Mtb-induced host cell death, examining their implications for host immunity. Furthermore, it discusses the potential of targeting host cell death pathways as therapeutic and preventive strategies against Mtb infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/patologia , Animais , Morte Celular/imunologia , Interações Hospedeiro-Patógeno/imunologia , Apoptose , Imunidade Inata , Autofagia/imunologia , Transdução de Sinais , Macrófagos/imunologia , Macrófagos/microbiologia
3.
Biomedicines ; 12(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38927576

RESUMO

Individuals with uncontrolled diabetes are highly susceptible to tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tb) infection. Novel treatments for TB are needed to address the increased antibiotic resistance and hepatoxicity. Previous studies showed that the administration of liposomal glutathione (L-GSH) can mitigate oxidative stress, bolster a granulomatous response, and diminish the M. tb burden in the lungs of M. tb-infected mice. Nonetheless, the impact of combining L-GSH with conventional TB treatment (RIF) on the cytokine levels and granuloma formation in the livers of diabetic mice remains unexplored. In this study, we evaluated hepatic cytokine profiles, GSH, and tissue pathologies in untreated and L-GSH, RIF, and L-GSH+RIF treated diabetic (db/db) M. tb-infected mice. Our results indicate that treatment of M. tb-infected db/db mice with L-GSH+RIF caused modulation in the levels of pro-inflammatory cytokines and GSH in the liver and mitigation in the granuloma size in hepatic tissue. Supplementation with L-GSH+RIF led to a decrease in the M. tb burden by mitigating oxidative stress, promoting the production of pro-inflammatory cytokines, and restoring the cytokine balance. These findings highlight the potential of L-GSH+RIF combination therapy for addressing active EPTB, offering valuable insights into innovative treatments for M. tb infections.

4.
Discov Med ; 36(185): 1091-1108, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38926097

RESUMO

This review comprehensively explores the dysregulation of Gamma Delta T-cells, CD8+ T Cells, and Natural Killer T Cells in the context of Human Immunodeficiency Virus (HIV) infection and its implications for brain pathology. It encompasses an overview of the HIV disease process, immune cell dysregulation, association with neurological diseases, and the critical role of Glutathione (GSH) in T-cell function. The alterations in Gamma Delta T-cells during chronic infection, the intricate dynamics of Vδ1 and Vδ2 subsets, and the potential of Vγ9Vδ2 T cells in inhibiting HIV replication are discussed. Additionally, the review addresses the exhaustion, impaired cytotoxicity, and premature senescence of CD8+ T cells, as well as the dysregulation of Natural Killer Cells (NKCs) and their impact on overall immune system activity. Furthermore, it examines the role of Gamma Delta (γδ) T-cells in brain injuries, infections, and tumors and highlights the therapeutic implications of elevated GSH levels in promoting a T helper 1 (Th1) immune response. However, HIV-infected patients with decreased GSH exhibit a T helper 2 (Th2) bias, compromising protection against intracellular pathogens. Finally, the review discusses studies in murine models demonstrating the impact of GSH levels on immune responses and underscores the therapeutic potential of targeting GSH to enhance immunity in HIV patients. Overall, this review provides valuable insights into the complex interplay between immune dysregulation, GSH levels, and HIV-associated brain pathology, offering insights into potential therapeutic avenues for mitigating immune compromise and neurological impairments in HIV patients.


Assuntos
Encéfalo , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Glutationa , Infecções por HIV , Humanos , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Glutationa/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologia , Encéfalo/imunologia , Encéfalo/patologia , Células Matadoras Naturais/imunologia , Animais
5.
Viruses ; 16(3)2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543687

RESUMO

The co-occurrence of human immunodeficiency virus (HIV) and tuberculosis (TB) infection poses a significant global health challenge. Treatment of HIV and TB co-infection often necessitates combination therapy involving antiretroviral therapy (ART) for HIV and anti-TB medications, which introduces the potential for drug-drug interactions (DDIs). These interactions can significantly impact treatment outcomes, the efficacy of treatment, safety, and overall patient well-being. This review aims to provide a comprehensive analysis of the DDIs between anti-HIV and anti-TB drugs as well as potential adverse effects resulting from the concomitant use of these medications. Furthermore, such findings may be used to develop personalized therapeutic strategies, dose adjustments, or alternative drug choices to minimize the risk of adverse outcomes and ensure the effective management of HIV and TB co-infection.


Assuntos
Fármacos Anti-HIV , Coinfecção , Infecções por HIV , Tuberculose , Humanos , Coinfecção/tratamento farmacológico , Coinfecção/complicações , HIV , Tuberculose/complicações , Tuberculose/tratamento farmacológico , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Interações Medicamentosas , Fármacos Anti-HIV/efeitos adversos
6.
Biomedicines ; 12(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38540171

RESUMO

This review explores ferroptosis, a form of regulated cell death reliant on iron-induced phospholipid peroxidation, in diverse physiological and pathological contexts, including neurodegenerative disorders, and ischemia-reperfusion. In the realm of cardiovascular diseases, it significantly contributes to cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, and restrictive cardiomyopathy. Ferroptosis involves intricate interactions within cellular iron metabolism, lipid peroxidation, and the balance between polyunsaturated and monounsaturated fatty acids. Molecularly, factors like p53 and NRF2 impact cellular susceptibility to ferroptosis under oxidative stress. Understanding ferroptosis is vital in cardiomyopathies, where cardiac myocytes heavily depend on aerobic respiration, with iron playing a pivotal role. Dysregulation of the antioxidant enzyme GPX4 is linked to cardiomyopathies, emphasizing its significance. Ferroptosis's role in myocardial ischemia-reperfusion injury, exacerbated in diabetes, underscores its relevance in cardiovascular conditions. This review explores the connection between ferroptosis, the NRF2 pathway, and atherosclerosis, emphasizing their roles in protecting cells from oxidative stress and maintaining iron balance. It discusses the use of iron chelating agents in managing iron overload conditions, with associated benefits and challenges. Finally, it highlights the importance of exploring therapeutic strategies that enhance the glutathione (GSH) system and the potential of natural compounds like quercetin, terpenoids, and phenolic acids in reducing oxidative stress.

7.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474196

RESUMO

Human immunodeficiency virus (HIV) is a major cause of death worldwide. Without appropriate antiretroviral therapy, the infection can develop into acquired immunodeficiency syndrome (AIDS). AIDS leads to the dysregulation of cell-mediated immunity resulting in increased susceptibility to opportunistic infections and excessive amounts of inflammatory cytokines. HIV-positive individuals also demonstrate diminished glutathione (GSH) levels which allows for increased viral replication and increased pro-inflammatory cytokine release, further contributing to the high rates of mortality seen in patients with HIV. Adequate GSH supplementation has reduced inflammation and slowed the decline of CD4+ T cell counts in HIV-positive individuals. We aim to review the current literature regarding the role of GSH in cell-mediated immune responses in individuals with HIV- and AIDS-defining illnesses.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , Humanos , HIV , Linfócitos T CD4-Positivos , Citocinas , Glutationa , Imunidade Celular
8.
Diseases ; 12(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38534973

RESUMO

Meningitis is an inflammatory condition affecting the meninges surrounding the brain and spinal cord. Meningitis can be triggered by various factors, including infectious agents like viruses and bacteria and non-infectious contributors such as cancer or head injuries. The impact of meningitis on the central nervous system involves disruptions in the blood-brain barrier, cellular infiltrations, and structural alterations. The clinical features that differentiate between tuberculous meningitis (TBM) and non-tuberculous meningitis (NTM) are discussed in this review and aid in accurate diagnosis. The intricate interplay of reactive oxygen species, ferroptosis, and reactive nitrogen species within the central nervous system reveals a promising field of research for innovative therapeutic strategies tailored to TBM. This review highlights the alternative treatments targeting oxidative stress-induced TBM and ferroptosis, providing potential avenues for intervention in the pathogenesis of this complex condition.

9.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338937

RESUMO

Despite the availability of antibiotic therapy, tuberculosis (TB) is prevailing as a leading killer among human infectious diseases, which highlights the need for better intervention strategies to control TB. Several animal model systems, including mice, guinea pigs, rabbits, and non-human primates have been developed and explored to understand TB pathogenesis. Although each of these models contributes to our current understanding of host-Mycobacterium tuberculosis (Mtb) interactions, none of these models fully recapitulate the pathological spectrum of clinical TB seen in human patients. Recently, humanized mouse models are being developed to improvise the limitations associated with the standard mouse model of TB, including lack of necrotic caseation of granulomas, a pathological hallmark of TB in humans. However, the spatial immunopathology of pulmonary TB in humanized mice is not fully understood. In this study, using a novel humanized mouse model, we evaluated the spatial immunopathology of pulmonary Mtb infection with a low-dose inoculum. Humanized NOD/LtSscidIL2Rγ null mice containing human fetal liver, thymus, and hematopoietic CD34+ cells and treated with human cytokines were aerosol challenged to implant <50 pathogenic Mtb (low dose) in the lungs. At 2 and 4 weeks post infection, the tissue bacterial load, disease pathology, and spatial immunohistology were determined in the lungs, liver, spleen, and adipose tissue using bacteriological, histopathological, and immunohistochemical techniques. The results indicate that implantation of <50 bacteria can establish a progressive disease in the lungs that transmits to other tissues over time. The disease pathology in organs correspondingly increased with the bacterial load. A distinct spatial distribution of T cells, macrophages, and natural killer cells were noted in the lung granulomas. The kinetics of spatial immune cell distribution were consistent with the disease pathology in the lungs. Thus, the novel humanized model recapitulates several key features of human pulmonary TB granulomatous response and can be a useful preclinical tool to evaluate potential anti-TB drugs and vaccines.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Humanos , Coelhos , Animais , Camundongos , Cobaias , Camundongos Endogâmicos NOD , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/patologia , Tuberculose/microbiologia , Pulmão/patologia , Granuloma/patologia
10.
Front Biosci (Elite Ed) ; 15(3): 15, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37743234

RESUMO

BACKGROUND: Extrapulmonary tuberculosis (EPTB) accounts for a fifth of all Mycobacterium tuberculosis (M. tb) infections worldwide. The rise of multidrug resistance in M. tb alongside the hepatotoxicity associated with antibiotics presents challenges in managing and treating tuberculosis (TB), thereby prompting a need for new therapeutic approaches. Administration of liposomal glutathione (L-GSH) has previously been shown to lower oxidative stress, enhance a granulomatous response, and reduce the burden of M. tb in the lungs of M. tb-infected mice. However, the effects of L-GSH supplementation during active EPTB in the liver and spleen have yet to be explored. METHODS: In this study, we evaluated hepatic glutathione (GSH) and malondialdehyde (MDA) levels, and the cytokine profiles of untreated and L-GSH-treated M. tb-infected wild type (WT) mice. Additionally, the hepatic and splenic M. tb burdens and tissue pathologies were also assessed. RESULTS: L-GSH supplementation increased total hepatic levels and reduced GSH. A decrease in the levels of MDA, oxidized GSH, and interleukin (IL)-6 was also detected following L-GSH treatment. Furthermore, L-GSH supplementation was observed to increase interferon-gamma (IFN-γ) and tumor necrosis factor (TNF)-α production and decrease IL-10 levels. M. tb survival was significantly reduced in the liver and spleen following L-GSH supplementation. L-GSH treatment also provided a host-protective effect in the liver and spleen of M. tb-infected mice. CONCLUSIONS: Overall, L-GSH supplementation elevated the levels of total and reduced forms of GSH in the liver and reduced the burden of M. tb by decreasing oxidative stress, enhancing the production of immunosupportive cytokines, and reducing the levels of immunosuppressive cytokines. These observed benefits highlight the potential of L-GSH supplementation during active EPTB and provide insight into novel therapeutic interventions against M. tb infections.


Assuntos
Baço , Tuberculose Extrapulmonar , Animais , Camundongos , Fígado , Citocinas , Glutationa , Suplementos Nutricionais
11.
Cells ; 12(16)2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37626871

RESUMO

Research has shown that obesity increases the risk for type 2 diabetes mellitus (Type 2 DM) by promoting insulin resistance, increases serum estrogen levels by the upregulation of aromatase, and promotes the release of reactive oxygen species (ROS) by macrophages. Increased circulating glucose has been shown to activate mammalian target of rapamycin (mTOR), a significant signaling pathway in breast cancer pathogenesis. Estrogen plays an instrumental role in estrogen-receptor-positive breast cancers. The role of ROS in breast cancer warrants continued investigation, in relation to both pathogenesis and treatment of breast cancer. We aim to review the role of obesity in breast cancer pathogenesis and novel therapies mediating obesity-associated breast cancer development. We explore the association between body mass index (BMI) and breast cancer incidence and the mechanisms by which oxidative stress modulates breast cancer pathogenesis. We discuss the role of glutathione, a ubiquitous antioxidant, in breast cancer therapy. Lastly, we review breast cancer therapies targeting mTOR signaling, leptin signaling, blood sugar reduction, and novel immunotherapy targets.


Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias , Humanos , Espécies Reativas de Oxigênio , Obesidade/complicações , Estrogênios , Serina-Treonina Quinases TOR
12.
Vaccines (Basel) ; 11(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37243059

RESUMO

Historically, research on the immunologic response to Mycobacterium tuberculosis (M. tb) infection has focused on T cells and macrophages, as their role in granuloma formation has been robustly characterized. In contrast, the role of B cells in the pathophysiology of M. tb infection has been relatively overlooked. While T cells are well-known as an essential for granuloma formation and maintenance, B cells play a less understood role in the host response. Over the past decade, scarce research on the topic has attempted to elucidate the varying roles of B cells during mycobacterial infection, which appears to be primarily time dependent. From acute to chronic infection, the role of B cells changes with time as evidenced by cytokine release, immunological regulation, and histological morphology of tuberculous granulomas. The goal of this review is to carefully analyze the role of humoral immunity in M. tb infection to find the discriminatory nature of humoral immunity in tuberculosis (TB). We argue that there is a need for more research on the B-cell response against TB, as a better understanding of the role of B cells in defense against TB could lead to effective vaccines and therapies. By focusing on the B-cell response, we can develop new strategies to enhance immunity against TB and reduce the burden of disease.

13.
Biomedicines ; 11(5)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37239011

RESUMO

Glutathione (GSH) is an antioxidant in human cells that is utilized to prevent damage occurred by reactive oxygen species, free radicals, peroxides, lipid peroxides, and heavy metals. Due to its immunological role in tuberculosis (TB), GSH is hypothesized to play an important part in the immune response against M. tb infection. In fact, one of the hallmark structures of TB is granuloma formation, which involves many types of immune cells. T cells, specifically, are a major component and are involved in the release of cytokines and activation of macrophages. GSH also serves an important function in macrophages, natural killer cells, and T cells in modulating their activation, their metabolism, proper cytokine release, proper redox activity, and free radical levels. For patients with increased susceptibility, such as those with HIV and type 2 diabetes, the demand for higher GSH levels is increased. GSH acts as an important immunomodulatory antioxidant by stabilizing redox activity, shifting of cytokine profile toward Th1 type response, and enhancing T lymphocytes. This review compiles reports showing the benefits of GSH in improving the immune responses against M. tb infection and the use of GSH as an adjunctive therapy for TB.

14.
Front Biosci (Landmark Ed) ; 28(3): 59, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-37005767

RESUMO

Immunothrombosis has emerged as a dominant pathological process exacerbating morbidity and mortality in acute- and long-COVID-19 infections. The hypercoagulable state is due in part to immune system dysregulation, inflammation and endothelial cell damage, as well as a reduction in defense systems. One defense mechanism in particular is glutathione (GSH), a ubiquitously found antioxidant. Evidence suggests that reduction in GSH increases viral replication, pro-inflammatory cytokine release, and thrombosis, as well as decreases macrophage-mediated fibrin removal. The collection of adverse effects as a result of GSH depletion in states like COVID-19 suggest that GSH depletion is a dominant mechanism of immunothrombosis cascade. We aim to review the current literature on the influence of GSH on COVID-19 immunothrombosis pathogenesis, as well as the beneficial effects of GSH as a novel therapeutic for acute- and long-COVID-19.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Tromboinflamação , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Glutationa/uso terapêutico
15.
Vaccines (Basel) ; 11(3)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36992214

RESUMO

Mycobacterium tuberculosis (M. tb) continues to be a leading cause of mortality within developing countries. The BCG vaccine to promote immunity against M. tb is widely used in developing countries and only in specific circumstances within the United States. However, current the literature reports equivocal data on the efficacy of the BCG vaccine. Critical within their role in the innate immune response, neutrophils serve as one of the first responders to infectious pathogens such as M. tb. Neutrophils promote effective clearance of M. tb through processes such as phagocytosis and the secretion of destructive granules. During the adaptative immune response, neutrophils modulate communication with lymphocytes to promote a strong pro-inflammatory response and to mediate the containment M. tb through the production of granulomas. In this review, we aim to highlight and summarize the role of neutrophils during an M. tb infection. Furthermore, the authors emphasize the need for more studies to be conducted on effective vaccination against M. tb.

16.
Pathogens ; 12(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36986330

RESUMO

Septic arthritis is a synovial fluid and joint tissue infection with significant morbidity and mortality risk if not diagnosed and treated promptly. The most common pathogen to cause septic arthritis is Staphylococcus aureus, a Gram-positive bacterium. Although diagnostic criteria are in place to guide the diagnosis of staphylococcal septic arthritis, there is a lack of adequate sensitivity and specificity. Some patients present with atypical findings which make it difficult to diagnose and treat in time. In this paper, we present the case of a patient with an atypical presentation of recalcitrant staphylococcal septic arthritis in a native hip complicated by uncontrolled diabetes mellitus and tobacco usage. We review current literature on diagnosing S. aureus septic arthritis, novel diagnostic technique performance to guide future research and assist clinical suspicion, and current S. aureus vaccine development for at-risk patients.

17.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835324

RESUMO

Tuberculosis (TB) is a leading cause of mortality due to infectious disease and rates have increased during the emergence of COVID-19, but many of the factors determining disease severity and progression remain unclear. Type I Interferons (IFNs) have diverse effector functions that regulate innate and adaptive immunity during infection with microorganisms. There is well-documented literature on type I IFNs providing host defense against viruses; however, in this review, we explore the growing body of work that indicates high levels of type I IFNs can have detrimental effects to a host fighting TB infection. We report findings that increased type I IFNs can affect alveolar macrophage and myeloid function, promote pathological neutrophil extracellular trap responses, inhibit production of protective prostaglandin 2, and promote cytosolic cyclic GMP synthase inflammation pathways, and discuss many other relevant findings.


Assuntos
COVID-19 , Interferon Tipo I , Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/metabolismo , Interferon Tipo I/metabolismo , Virulência , Imunidade Inata , Interferons/metabolismo
18.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675296

RESUMO

Mycobacterium tuberculosis (M. tb) causes tuberculosis infection in humans worldwide, especially among immunocompromised populations and areas of the world with insufficient funding for tuberculosis treatment. Specifically, M. tb is predominantly exhibited as a latent infection, which poses a greater risk of reactivation for infected individuals. It has been previously shown that M. tb infection requires pro-inflammatory and anti-inflammatory mediators to manage its associated granuloma formation via tumor necrosis factor-α (TNF-α), interleukin-12 (IL-12), interferon-γ (IFN-γ), and caseum formation via IL-10, respectively. Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) has been found to play a unique mediator role in providing a pro-inflammatory response to chronic inflammatory disease processes by promoting the activation of macrophages and the release of various cytokines such as IL-1, IL-6, IL-12, and TNF-α. NF-κB's role is especially interesting in its mechanism of assisting the immune system's defense against M. tb, wherein NF-κB induces IL-2 receptors (IL-2R) to decrease the immune response, but has also been shown to crucially assist in keeping a granuloma and bacterial load contained. In order to understand NF-κB's role in reducing M. tb infection, within this literature review we will discuss the dynamic interaction between M. tb and NF-κB, with a focus on the intracellular signaling pathways and the possible side effects of NF-κB inactivation on M. tb infection. Through a thorough review of these interactions, this review aims to highlight the role of NF-κB in M. tb infection for the purpose of better understanding the complex immune response to M. tb infection and to uncover further potential therapeutic methods.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Tuberculose/microbiologia , Mycobacterium tuberculosis/metabolismo , Citocinas , Interleucina-12
19.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012562

RESUMO

Coronaviruses represent a diverse family of enveloped positive-sense single stranded RNA viruses. COVID-19, caused by Severe Acute Respiratory Syndrome Coronavirus-2, is a highly contagious respiratory disease transmissible mainly via close contact and respiratory droplets which can result in severe, life-threatening respiratory pathologies. It is understood that glutathione, a naturally occurring antioxidant known for its role in immune response and cellular detoxification, is the target of various proinflammatory cytokines and transcription factors resulting in the infection, replication, and production of reactive oxygen species. This leads to more severe symptoms of COVID-19 and increased susceptibility to other illnesses such as tuberculosis. The emergence of vaccines against COVID-19, usage of monoclonal antibodies as treatments for infection, and implementation of pharmaceutical drugs have been effective methods for preventing and treating symptoms. However, with the mutating nature of the virus, other treatment modalities have been in research. With its role in antiviral defense and immune response, glutathione has been heavily explored in regard to COVID-19. Glutathione has demonstrated protective effects on inflammation and downregulation of reactive oxygen species, thereby resulting in less severe symptoms of COVID-19 infection and warranting the discussion of glutathione as a treatment mechanism.


Assuntos
COVID-19 , COVID-19/terapia , Vacinas contra COVID-19 , Glutationa , Humanos , Espécies Reativas de Oxigênio , SARS-CoV-2
20.
Front Pharmacol ; 13: 879729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814213

RESUMO

Both active tuberculosis (TB) and asymptomatic latent Mycobacterium tuberculosis (M. tb) infection (LTBI) cause significant health burdens to humans worldwide. Individuals with immunocompromising health conditions, such as Type 2 Diabetes Mellitus (T2DM), have a weakened ability to control M. tb infection and are more susceptible to reactivation of LTBI to active diseases. T2DM cases are known to have glutathione (GSH) deficiency and impaired immune cell function, including the granulomatous response to M. tb infection. We have previously reported that liposomal glutathione (L-GSH) supplementation can restore the immune cell effector responses of T2DM cases. However, the effects of L-GSH supplementation on the bactericidal activities of first-line anti-TB drug rifampicin (RIF) against M. tb infection have yet to be explored. The aim of this study is to elucidate the effects of L-GSH supplementation in conjunction with RIF treatment during an active M. tb infection in a diabetic mouse model. In this study, we evaluated total and reduced levels of GSH, cytokine profiles, malondialdehyde (MDA) levels, M. tb burden, and granulomatous response in the lungs. We show that L-GSH supplementation caused a significant reduction in M. tb burden in the lungs, decreased oxidative stress, and increased the production of IFN-γ, TNF-α, IL-17, IL-10, and TGF-ß1compared to the untreated mice. In addition, L-GSH supplementation in conjunction with RIF treatment achieved better control of M. tb infection in the lungs and significantly reduced the levels of oxidative stress compared to treatment with RIF alone. Moreover, L-GSH in conjunction with RIF significantly increased TGF-ß1 levels compared to treatment with RIF alone. These findings suggest potential therapeutic benefits of L-GSH supplementation in conjunction with first-line antibiotic therapy against M. tb infection in individuals with T2DM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA