Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ultrasound Med Biol ; 46(11): 3017-3031, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32768323

RESUMO

We tested the effect of low-frequency ultrasound (LUS, 20 kHz, 4 W/cm2) on the function of rat mesentery and human pulmonary arteries with wire myography. The vessels were induced to contract with either noradrenaline or physiologic saline solution (PSS) with a high potassium concentration (KPSS) and then incubated with capsaicin (2.1 × 10-7 M, TRPV1 [transient receptor potential vanilloid 1] activator), dopamine (1 × 10-4 M, dopamine and α2-receptor activator), or fenoldopam (dopamineA1 receptor agonist, 1 × 10-4 M) with and without glibenclamide (1 µM, KATP [adenosine triphosphate {sensitive potassium channel (ATP)}-sensitive potassium channel] inhibitor and α2-receptor modulator), and insonated. Vessels were incubated in Ca2+-free PSS and induced to contract with added extracellular Ca2+ and noradrenaline. Pulmonary arteries were induced to contract with KPSS and dopamine. Then the vessels were insonated. LUS inhibited the influx of external Ca2+, inhibited the dopamine-induced vasoconstriction in the KPSS (glibenclamide reversible), reduced the capsaicin-induced vasorelaxation, increased the gentamicin-induced vasorelaxation and increased the dopamine-induced contraction in the KPSS in human pulmonary arteries.


Assuntos
Mesentério/efeitos dos fármacos , Mesentério/efeitos da radiação , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/efeitos da radiação , Ondas Ultrassônicas , Animais , Humanos , Miografia , Ratos , Ratos Wistar
2.
Technol Health Care ; 26(S2): 625-634, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29843285

RESUMO

BACKGROUND: Majority of limb amputations are caused by circulatory disturbances such as vascular occlusions and strictures. Discovery of modern and more advanced ultrasonic interventional vascular debulking methodology would likely save limbs of CVD patients and their lives in an economical way. However, there is a lack of researches regarding the ultrasound's effect on physiological functions of human blood cells. The tube-shaped ultrasound waveguide wire with orifices at its operational end was offered as the alternative to some currently patented interventional thrombosis treatment solutions. OBJECTIVE: To establish the safe operating regime of the proposed device. METHODS: The temperature rise induced by the cavitation process and friction between the waveguide and surrounding fluids was measured and microscopic pictures of human blood were made. RESULTS: Blood insonation lasting 15 seconds, leads to blood clot formation. If insonation continues for 30 seconds some cells are totally destroyed. In addition, the safe operating regime was established. To avoid heating of the environment to the temperature harmful for the medium (blood) and surrounding tissues, is achieved when the system should be on for 40%, and of for 60% of the period of 1 second. CONCLUSIONS: The safe operating regime of the proposed device was established.


Assuntos
Ultrassonografia de Intervenção/métodos , Procedimentos Cirúrgicos Vasculares/métodos , Doenças Cardiovasculares/prevenção & controle , Procedimentos Cirúrgicos de Citorredução/métodos , Humanos , Temperatura , Procedimentos Cirúrgicos Ultrassônicos/métodos
3.
Biomed Tech (Berl) ; 63(3): 279-290, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29624499

RESUMO

Time-consuming design and manufacturing processes are a serious disadvantage when adapting human cardiovascular implants as they cause unacceptable delays after the decision to intervene surgically has been made. An ideal cardiovascular implant should have a broad range of characteristics such as strength, viscoelasticity and blood compatibility. The present research proposes the sequence of the geometrical adaptation procedures and presents their results. The adaptation starts from the identification of a person's current health status while performing abdominal aortic aneurysm (AAA) imaging, which is a point of departure for the mathematical model of a cardiovascular implant. The computerized tomography scan shows the patient-specific geometry parameters of AAA and helps to create a model using COMSOL Multiphysics software. The initial parameters for flow simulation are taken from the results of a patient survey. The simulation results allow choosing the available shape of an implant which ensures a non-turbulent flow. These parameters are essential for the design and manufacturing of an implant prototype which should be tested experimentally for the assurance that the mathematical model is adequate to a physical one. The article gives a focused description of competences and means that are necessary to achieve the shortest possible preparation of the adapted cardiovascular implant for the surgery.


Assuntos
Aneurisma da Aorta Abdominal/enfermagem , Aneurisma da Aorta Abdominal/fisiopatologia , Prótese Vascular/efeitos adversos , Stents/efeitos adversos , Aneurisma da Aorta Abdominal/complicações , Aneurisma da Aorta Abdominal/cirurgia , Sistema Cardiovascular , Humanos , Modelos Cardiovasculares , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA